

AE, JE, State PSC, ESE, PSU's & Other Competitive Exams SSC-JE (Pre & Mains) | RRB-JE | UPSSSC-JE | UPPSC-AE :

• NHPC-JE • UKPSC AE • BPSC AE • CGPSC AE • MPPSC AE • RPSC AE • DMRC JE • LMRC JE • JMRC JE • BMRC JE • DSSSB JE/AE • SJVN JE • UKSSSC JE • RSMSSB JE • HPSSC JE • MPPEB SUB ENGINEER • DDA-AE/JE • HSSC JE • JSSC JE • BSSC JE • DRDO JE • ISRO • CGPEB SUB ENGINEER • UPPCL AE/JE • UPRVUNL AE/JE • JVUNL JE • SAIL JE • GAIL JE •BHEL JE • NTPC JE • DFCCIL • COAL INDIA LTD. JE • WBPSC AE • TAMILNADU TRB • TNPSC AE • J&K PSC AE • SIKKIM PSC AE • OPSC AE • MPSC AE • GUJARAT PSC AE • PTCUL

> **Chief Editor** A.K. Mahajan

Compiled & Written by Er. Maneesh Kr. Yadav (Highway Engineer Delhi) Er. Pradeep Kr. Gupta, Er. Anees kr. Verma,

Computer Graphics by Bal Krishna, Charan Singh, Arjun Prasad & Pankaj Kushwaha

Editorial Office 12, Church Lane Prayagraj-211002 Mob. : 9415650134 Email : yctap12@gmail.com website : www.yctbooks.com / www.yctfastbook.com

© All rights reserved with Publisher

Publisher Declaration Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and printed by EXAM PREPARATION APP In order to Publish the E-book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

Index

□ Appendix	
□ Amendment (IS 456 : 2000) 2013 & 2019	
□ Building Material	31-67
1. Building Rock and Stone	
2. Bricks	
3. Lime	
4. Cement	
5. Timber	
6. Paint	
7. Ferrous and Non-Ferrous Material	
8. Glass	
D Building Construction and Maintenance Engineering	
1. Introduction	
2. Masonry	
3. Lintel and Arches	
4. Stairs	
5. Scaffolding and Shoring	
6. Door, Window & Ventilators	
7. Roofs and Roof covering	
8. Surface Finishing	
9. Construction Equipment	
Concrete Technology	
1. Introduction	
2. Property of Concrete	
3. Water Cement Ratio	
4. Formwork	
5. Proportioning of Concrete mixes	
6. Concreting Operations	
7. Concreting in Adverse Conditions	
8. Durability of Concrete	
9. Repair and Maintenance of Concrete	
10. Special Types of Concrete	
11. Miscellaneous	
Earthquake Engineering and Disaster Management	
□ Surveying Engineering	
O Surveying I	
1. Introduction of Surveying	
2. Chain Surveying	
3. Compass Surveying	
4. Levelling	
5. Calculation of Area	
6. Minor Instrument	
7. Conventional sign	
O Surveying II	
1. Plane Table Surveying	
2. Contouring	
-	

3. Theodolite	190-193
4. Tacheometric Surveying	193-195
5. Curve	196-197
O Advance Survey	198-207
1. Modern Field Survey System	
2. Photogrammetric or Areal survey	
3. Field Astronomy	
Estimating Costing & Valuation	
1. Introduction	
2. Unit of Measurement and Payment	212-214
3. Methods of Building Estimate	
4. Earth work in road and canal	
5. Analysis of Rates	
6. Valuation	
Engineering Drawing	
□ Auto Cad	
Construction Management, Accounts & Entrepreneurship Development (CMAED)	
1. Construction Management, Planning and Scheduling	
2. Organization	
3. Miscellaneous	
Reinforced Cement Concrete	
1. Introduction	
2. Working stress method (WSM)	
3. Doubly Reinforced Beam.	
4. Shear and Bond Strengths	
5. Reinforced Concrete Slab	
6. T-Beam or Flanged Beams	
7. Columns and Footing	
8. Retaining Walls.	
9. Limit State Method	
10. Prestressed Concrete	
□ Applied Mechanics	
□ Strength of Material	
1. Simple stress and strain.	
2. Principal Stress and Strain	
3. Strain Energy.	
4. Theories of Failure	
5. Shear Force and Bending Moment	
6. Direct stress and bending stress	
7. Slope and Deflection of Beam	
8. Bending Stress in Beams.	
9. Shear Stresses in Beams and Shear Centre	
10. Column and Strut	
11. Torsion	
12. Springs	
13. Pressure vessels	
14. Centre of gravity and moment of Inertia.	
 Design of Steel Structure 1. Introduction 	
2. Structural Fasteners	

3. Tension Member	
4. Compression Member	
5. Beam & Gantry Girder	
6. Eccentric Connections	
7. Column Bases	
8. Plate Girder	
9. Plastic Analysis	
Structural Analysis	
1. Determinacy and Indeterminacy	
2. Truss	
3. Influence Line Diagram	
4. Suspension Bridge, Cables and Arches	
5. Methods of Structural Analysis	
6. Matrix Method	
Fluid Mechanics	
1. Properties of Fluids	
2. Pressure and its Measurement	
3. Hydrostatic forces on surfaces	
4. Buoyancy and Floatation	
5. Kinematics of Flow	
6. Fluid Dynamics	
7. Orifices and Mouthpieces	
8. Notches and Weirs	
9. Viscous Flow	
10. Turbulent flow	
11. Flow Through Pipes	
12. Dimensional and Model Analysis	
13. Boundary Layer Theory	
14. Open Channel Flow	
15. Impact of Jets and Jet Propulsion	
16. Turbine and Pumps	
Irrigation Engineering	
1. Irrigation Technique and quality of irrigation water	
2. Water requirement of crops	
3. Canal irrigation System	
4. Design of Irrigation Channel	
5. Construction and Maintenance of Canals	
6. Diversion Headworks	
7. River Training Works	
8. Cross Drainage work	
9. Design and construction of gravity dam	
10. Water Logging and Drainage	
11. Ground Water	
Engineering Hydrology	
1. Introduction	
2. Precipitation	
3. Abstraction from precipitation & Stream Flow Measurement	
4. Runoff and Hydrograph	
5. Floods and Flood Routing	

O Water Supply Engineering 492-315 1. Water Quality Parameter 493-496 2. Water Quality Parameter 497-503 3. Treatment of Water 501-512 5. Distribution System 513-515 O Sanitary Engineering 516-518 1. Public Sanitator quantity of sewage 516-517 2. Sewerage Systems and sewer 518-520 3. Building Drainage and plumbing 521-522 4. Characteristics of Waste Water or Sewage 523-531 6. Disposal of Waste Water and Sewage 523-531 7. Pollution (Air and Noise) 534-538 7. Pollution (Air and Noise) 534-534 1. Origin of soil 541-542 2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 541-553 5. Soil Structure and Clay Mineralogy 554-555 6. Fiffective and Neutral Stresses 556-556 7. Soil Hydraulic 572-574 8. Compaction 562-564 9. Consolidation 562-564 9. Soil Hydraulic 572-577 8. Compaction 593-594 9. Stress Distributon in Soil 572-574	Environmental Engineering	
2. Water Quality Parameter	O Water Supply Engineering	
3. Treatment of Water 504-509 4. Disinfaction and Softening of Water 510-511 5. Distribution System 516-538 1. Public Sanitation quantity of sewage 516-538 1. Public Sanitation quantity of sewage 516-538 1. Public Sanitation quantity of sewage 516-538 1. Severage Systems and sewer 518-520 3. Building Drainage and plumbing 521-522 4. Characteristics of Waste Water and Sewage 532-533 5. Disposal of Waste Water and Sewage 532-533 7. Pollution (Air and Noise) 534-538 Soil Mechanics 539-594 1. Origin of soil 540-540 2. Basic definition & simple test of soil 541-544 3. Hoke properties of Soil 541-554 3. Soil Muchanizes 556-556 5. Soil Structure and Clay Mineralogy 554-555 5. Soil Hydraulic 577-561 8. Compaction 562-564 9. Consolidation 562-564 9. Consolidation 562-564 9. Consolidation 562-564 9. Consolidation 573-571 18. Early Eloploration 593-594	1. Water Demand	
4. Disinfection and Softening of Water 510-512 5. Distribution System. 513-515 O Sanitary Engineering 516-538 1. Public Sanitation quantity of sewage 516-517 2. Sewerage Systems and sewer 518-520 3. Building Drainage and plumbing. 521-522 4. Characteristics of Waste Water or Sewage 523-525 5. Sewage Treatment 522-533 7. Pollution (Air and Noise) 534-538 O Soil Mechanics 539-594 1. Origin of soil 540-540 2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 541-544 4. Soil Itasification 551-553 5. Soil Structure and Clay Mineralogy 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 572-574 8. Compaction 562-556 9. Consolidation 572-574 10. Stability of Slope 596-597 11. Farth Pressure Theory 572-574 12. Stress Distribution in Soil 572-574 13. Shear Strength of Soil 578-581 14. Foundation 582-587	2. Water Quality Parameter	
5. Distribution System. 513-515 O Sanitary Engineering 166318 1. Public Sanitation quantity of sewage 516-517 2. Sewerage Systems and sewer 518-520 3. Building Drainage and plumbing 521-522 4. Characteristics of Waste Water or Sewage 523-525 5. Sewage Treatment 525-531 6. Disposal of Waste Water and Sewage 532-533 7. Pollution (Air and Noise) 534-550 8. Soil Mechanics 539-594 1. Origin of soil 540-540 2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 545-550 4. Soil classification 551-553 5. Soil Structure and Clay Mineralogy. 554-555 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 562-556 10. Stability of Slope 576-556 11. Earth Pressure Theory 572-571 12. Strees Distribution in Soil 578-581 14. Foundation 582-587 15. Bearing Capacity of Shallow Foundation 582-587 16. Soil Exploration 593-594	3. Treatment of Water	504-509
O Sanitary Engineering 516-538 1. Public Sanitation quantity of sewage 516-517 2. Sewerage Systems and sewer 518-520 3. Building Drainage and plumbing 521-522 4. Characteristics of Waste Water or Sewage 523-525 5. Sewage Treatment 525-531 6. Disposal of Waste Water and Sewage 532-533 7. Pollution (Air and Noise) 534-538 O Soil Mechanics 539-594 1. Origin of soil 540-540 2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 541-554 4. Soil Lassification 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 562-564 9. Consolidation 562-564 10. Soil Hydraulic 575-577 13. Shear Strength of Soil 578-561 14. Foundation 588-592 15. Soil Structure and Clay Mineralogy 572-577 14. Foundation 582-587 15. Soil Hydraulic 575-576 16. Soil Exploration	4. Disinfection and Softening of Water	
1. Public Sanitation quantity of sewage 516-517 2. Sewerage Systems and sewer 518-520 3. Building Drainage and plumbing 521-522 4. Characteristics of Waste Water or Sewage 523-525 5. Sewage Treatment 525-531 6. Disposal of Waste Water and Sewage 532-533 7. Pollution (Air and Noise) 534-538 O Soil Mechanics 539-594 1. Origin of soil 540-540 2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 545-555 4. Soil classification 551-553 5. Soil Structure and Clay Mineralogy 554-555 6. Effective and Neutral Stresses 556-566 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 562-564 10. Stability of Slope 569-571 13. Shear Strength of Soil 578-571 13. Shear Strength of Soil 578-577 14. Foundation 582-592	5. Distribution System	
2. Sewerage Systems and sewer. 518-520 3. Building Drainage and plumbing. 521-522 4. Characteristics of Waste Water or Sewage 523-525 5. Sewage Treatment 525-531 6. Disposal of Waste Water and Sewage 532-533 7. Pollution (Air and Noise) 534-538 7. Pollution (Air and Noise) 534-540 8. Soil Mechanics. 539-594 1. Origin of soil 541-543 3. Index properties of Soil 541-543 4. Index properties of Soil 541-543 4. Soil classification 551-553 5. Soil Structure and Clay Mineralogy. 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 562-564 9. Consolidation 562-577 11. Earth Pressure Theory 572-571 12. Stress Distribution in Soil 578-581 14. Foundation 582-587 15. Bearing Capacity of Shallow Foundation 582-592 16. Soil Exploration 595-627 17. Bighway Development and Planning 596-598	O Sanitary Engineering	
3. Building Drainage and plumbing 521-522 4. Characteristics of Waste Water or Sewage 523-525 5. Sewage Treatment 525-531 6. Disposal of Waste Water and Sewage 532-533 7. Pollution (Air and Noise) 534-538 7. Soil Mechanics 539-594 1. Origin of soil 540-540 2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 541-553 5. Soil Structure and Clay Mineralogy 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 562-564 10. Stability of Slope 569-571 11. Earth Pressure Theory 572-574 12. Stress Distribution in Soil 578-581 14. Foundation 582-587 15. Bearing Capacity of Shallow Foundation 582-587	1. Public Sanitation quantity of sewage	516-517
4. Characteristics of Waste Water or Sewage 523-525 5. Sewage Treatment 525-531 6. Disposal of Waste Water and Sewage 532-533 7. Pollution (Air and Noise) 534-538 Soil Mechanics 539-594 1. Origin of soil 540-540 2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 541-554 4. Soil classification 551-553 5. Soil Structure and Clay Mineralogy 554-556 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 562-556 9. Consolidation 562-556 9. Consolidation 562-564 9. Consolidation 562-564 9. Consolidation 562-564 9. Consolidation 572-571 11. Farth Pressure Theory 572-577 13. Shear Strength of Soil 578-581 14. Foundation 582-587 15. Bearing Capacity of Shallow Foundation 582-587 15. Bearing Capacity of Shallow Foundation 582-572 14. Highway Lengineering	2. Sewerage Systems and sewer	518-520
5. Sewage Treatment 525-531 6. Disposal of Waste Water and Sewage 532-533 7. Pollution (Air and Noise) 534-538 Soil Mechanics 539-594 1. Origin of soil 540-540 2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 541-554 4. Soil classification 551-553 5. Soil Structure and Clay Mineralogy 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 562-564 10. Stability of Slope 569-571 11. Earth Pressure Theory 572-571 12. Stress Distribution in Soil 578-581 14. Foundation 582-587 15. Bearing Capacity of Shallow Foundation 582-587 16. Soil Exploration 593-594 17. Highway Development and Planning 596-627 14. Highway Materials 619-622 5. Pavement Design of Highways 599-608 3. Traffic Engineering 623-627 4. Highway Materials 619-622 5. Pavement Design	3. Building Drainage and plumbing	
6. Disposal of Waste Water and Sewage 532-533 7. Pollution (Air and Noise) 534-538 Soil Mechanics 539-594 1. Origin of soil 540-540 2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 541-544 3. Index properties of Soil 541-553 5. Soil Structure and Clay Mineralogy 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-568 10. Stability of Slope 569-571 11. Earth Pressure Theory 572-577 12. Stress Distribution in Soil 578-581 14. Foundation 582-587 15. Bearing Capacity of Shallow Foundation 582-587 16. Soil Exploration 593-594 17. Highway Development and Planning 594-508 18. Traffic Engineering 609-618 4. Highway Materials 619-622 5. Pavement Design 623-627 19. Reidway Engineering 623-627 19. Highway Materials 619-622 5. Pavement Design of Track 635-637 19. Urito	4. Characteristics of Waste Water or Sewage	
7. Pollution (Air and Noise) 534-538 7. Pollution (Air and Noise) 539-594 1. Origin of soil 540-540 2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 545-550 4. Soil classification 551-553 5. Soil Structure and Clay Mineralogy 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 562-564 9. Consolidation 562-564 9. Consolidation 562-564 9. Stability of Slope 569-571 11. Earth Pressure Theory 572-571 12. Stress Distribution in Soil 578-581 14. Foundation 588-592 16. Soil Exploration 598-627 11. Hard Mation 588-592 16. Soil Exploration 593-594 15. Bearing Capacity of Shallow Foundation 588-592 16. Soil Exploration 593-647 11. Highway Development and Planning 596-657 14. Highway Materials 619-622 5. Pavement Design of Highways 5	5. Sewage Treatment	
□Soil Mechanics	6. Disposal of Waste Water and Sewage	
1. Origin of soil 540-540 2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 541-551 4. Soil classification 551-553 5. Soil Structure and Clay Mineralogy 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 565-568 10. Stability of Slope 569-571 11. Earth Pressure Theory 572-577 12. Stress Distribution in Soil 575-577 13. Shear Strength of Soil 578-581 14. Foundation 582-587 15. Bearing Capacity of Shallow Foundation 588-592 16. Soil Exploration 595-627 11. Highway Development and Planning 596-578 2. Geometric Design of Highways 599-608 3. Traffic Engineering 629-630 2. Rail Joints, Defect and Track Stresses 631-632 3. Geometric Design of Track 638-639 5. Sleeper, Ballast, Fastening and Fixtures 640-642 6. Railway Signal and Station Yard 643-645 6. Bridge, Tunnel and Airport Engineering<	7. Pollution (Air and Noise)	534-538
2. Basic definition & simple test of soil 541-544 3. Index properties of Soil 545-550 4. Soil classification 551-553 5. Soil Structure and Clay Mineralogy 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 565-568 10. Stability of Slope 569-574 11. Earth Pressure Theory 572-577 13. Shear Strength of Soil 578-581 14. Foundation 582-587 15. Bearing Capacity of Shallow Foundation 588-592 16. Soil Exploration 593-594 1 Highway Development and Planning 596-598 2. Geometric Design of Highways 599-608 3. Traffic Engineering 609-618 4. Highway Materials 619-622 5. Pavement Design 623-627 17. Introduction 623-627 18. Berdineering 631-634 3. Geometric Design of Track 635-637 4. Highway Materials 619-622 5. Pavement Design 623-627 7 Rail Joints, Defect and Trac	□ Soil Mechanics	539-594
3. Index properties of Soil 545-550 4. Soil classification 551-553 5. Soil Structure and Clay Mineralogy 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 562-564 9. Consolidation 562-564 9. Consolidation 562-568 10. Stability of Slope 569-571 11. Earth Pressure Theory 572-571 12. Stress Distribution in Soil 577-557 13. Shear Strength of Soil 578-581 14. Foundation 582-587 15. Bearing Capacity of Shallow Foundation 588-592 16. Soil Exploration 593-594 11 Highway Engineering 596-578 2. Geometric Design of Highways 599-608 3. Traffic Engineering 609-618 4. Highway Materials 619-622 5. Pavement Design 623-627 1. Introduction 629-630 2. Rail Joints, Defect and Track Stresses 631-634 3. Geometric Design of Track 635-637 4. Point and Crossing 638-639<	1. Origin of soil	
3. Index properties of Soil 545-550 4. Soil classification 551-553 5. Soil Structure and Clay Mineralogy 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 562-564 9. Consolidation 562-564 9. Consolidation 562-568 10. Stability of Slope 569-571 11. Earth Pressure Theory 572-571 12. Stress Distribution in Soil 577-557 13. Shear Strength of Soil 578-581 14. Foundation 582-587 15. Bearing Capacity of Shallow Foundation 588-592 16. Soil Exploration 593-594 11 Highway Engineering 596-578 2. Geometric Design of Highways 599-608 3. Traffic Engineering 609-618 4. Highway Materials 619-622 5. Pavement Design 623-627 1. Introduction 629-630 2. Rail Joints, Defect and Track Stresses 631-634 3. Geometric Design of Track 635-637 4. Point and Crossing 638-639<	2. Basic definition & simple test of soil	
4. Soil classification 551-553 5. Soil Structure and Clay Mineralogy 554-555 6. Effective and Neutral Stresses 556-556 7. Soil Hydraulic 557-561 8. Compaction 562-564 9. Consolidation 562-564 9. Consolidation 562-568 10. Stability of Slope 569-571 11. Earth Pressure Theory 572-571 12. Stress Distribution in Soil 577-567 13. Shear Strength of Soil 578-581 14. Foundation 582-587 15. Bearing Capacity of Shallow Foundation 588-592 16. Soil Exploration 593-594 Highway Engineering 595-627 1. Highway Development and Planning 596-688 2. Geometric Design of Highways 599-608 3. Traffic Engineering 609-618 4. Highway Materials 619-622 5. Pavement Design 623-627 1. Introduction 629-630 2. Reometric Design of Track 635-637 4. Point and Crossing 631-634 3. Geometric Design of Track 635-637 4. Point and Crossing 638-639		
5. Soil Structure and Clay Mineralogy .554-555 6. Effective and Neutral Stresses .556-556 7. Soil Hydraulic .557-561 8. Compaction .562-564 9. Consolidation .565-568 10. Stability of Slope .569-571 11. Earth Pressure Theory .572-574 12. Stress Distribution in Soil .575-577 13. Shear Strength of Soil .578-581 14. Foundation .582-587 15. Bearing Capacity of Shallow Foundation .582-587 16. Soil Exploration .593-594 11 Highway Engineering .596-627 1. Highway Development and Planning .596-598 2. Geometric Design of Highways .599-608 3. Traffic Engineering .609-618 4. Highway Materials .619-622 5. Pavement Design .623-627 1. Introduction .629-630 2. Rail Joints, Defect and Track Stresses .631-634 3. Geometric Design of Track .635-637 4. Point and Crossing .638-639 5. Sleeper, Ballast, Fastening and Fixtures .640-642 6. Railway Signal and Station Yard .643-645		
6. Effective and Neutral Stresses .556-556 7. Soil Hydraulic .557-561 8. Compaction .562-564 9. Consolidation .565-568 10. Stability of Slope .569-571 11. Earth Pressure Theory .572-574 12. Stress Distribution in Soil .575-577 13. Shear Strength of Soil .578-581 14. Foundation .582-587 15. Bearing Capacity of Shallow Foundation .588-592 16. Soil Exploration .593-594 11 Highway Engineering .596-627 11. Highway Development and Planning .596-627 13. Traffic Engineering .609-618 4. Highway Materials .619-622 5. Pavement Design .623-637 1 Introduction .629-630 2. Rail Joints, Defect and Track Stresses .631-634 3. Geometric Design of Track .635-637 4. Point and Crossing .638-639 5. Sleeper, Ballast, Fastening and Fixtures .640-642 6. Railway Signal and Station Yard .643-645 6. Bridge, Tunnel and Airport Engineering .647-649 2. Tunnel Engineering .647-649 </td <td></td> <td></td>		
8. Compaction .562-564 9. Consolidation .565-568 10. Stability of Slope .569-571 11. Earth Pressure Theory .572-574 12. Stress Distribution in Soil .575-577 13. Shear Strength of Soil .578-581 14. Foundation .582-587 15. Bearing Capacity of Shallow Foundation .588-592 16. Soil Exploration .593-594 Highway Engineering .595-627 1. Highway Development and Planning .596-578 2. Geometric Design of Highways .599-608 3. Traffic Engineering .609-618 4. Highway Materials .619-622 5. Pavement Design .623-627 C Railway Engineering .623-627 1. Introduction .623-627 1. Railway Engineering .623-627 2. Rail Joints, Defect and Track Stresses .631-634 3. Geometric Design of Track .635-637 4. Point and Crossing .638-639 5. Sleeper, Ballast, Fastening and Fixtures .640-642 6. Railway Signal and Station Yard .643-645 Bridge, Tunnel and Airport Engineering .647-649		
8. Compaction .562-564 9. Consolidation .565-568 10. Stability of Slope .569-571 11. Earth Pressure Theory .572-574 12. Stress Distribution in Soil .575-577 13. Shear Strength of Soil .578-581 14. Foundation .582-587 15. Bearing Capacity of Shallow Foundation .588-592 16. Soil Exploration .593-594 Highway Engineering .595-627 1. Highway Development and Planning .596-578 2. Geometric Design of Highways .599-608 3. Traffic Engineering .609-618 4. Highway Materials .619-622 5. Pavement Design .623-627 C Railway Engineering .623-627 1. Introduction .623-627 1. Railway Engineering .623-627 2. Rail Joints, Defect and Track Stresses .631-634 3. Geometric Design of Track .635-637 4. Point and Crossing .638-639 5. Sleeper, Ballast, Fastening and Fixtures .640-642 6. Railway Signal and Station Yard .643-645 Bridge, Tunnel and Airport Engineering .647-649	7. Soil Hydraulic	
9. Consolidation565-56810. Stability of Slope569-57111. Earth Pressure Theory572-57412. Stress Distribution in Soil575-57713. Shear Strength of Soil578-58114. Foundation582-58715. Bearing Capacity of Shallow Foundation588-59216. Soil Exploration593-59411. Highway Development and Planning596-5982. Geometric Design of Highways599-6083. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design.623-6271. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-6451. Bridge, Tunnel and Airport Engineering647-6492. Tunnel Engineering650-652	•	
10. Stability of Slope569-57111. Earth Pressure Theory572-57412. Stress Distribution in Soil575-57713. Shear Strength of Soil578-58114. Foundation582-58715. Bearing Capacity of Shallow Foundation588-59216. Soil Exploration593-594I Highway Engineering595-6271. Highway Development and Planning596-5982. Geometric Design of Highways599-6083. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design628-6451. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-6451. Bridge Engineering647-6492. Tunnel Engineering650-652	*	
11. Earth Pressure Theory572-57412. Stress Distribution in Soil575-57713. Shear Strength of Soil578-58114. Foundation582-58715. Bearing Capacity of Shallow Foundation588-59216. Soil Exploration593-594I Highway Engineering595-6271. Highway Development and Planning596-5982. Geometric Design of Highways599-6083. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design628-6451. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard644-6451. Bridge Engineering646-6561. Bridge Engineering647-6492. Tunnel Engineering650-652		
12. Stress Distribution in Soil575-57713. Shear Strength of Soil578-58114. Foundation582-58715. Bearing Capacity of Shallow Foundation588-59216. Soil Exploration593-594□ Highway Engineering595-6271. Highway Development and Planning596-5982. Geometric Design of Highways599-6083. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design623-627□ Railway Engineering628-6451. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-6451. Bridge Engineering646-6561. Bridge Engineering647-6492. Tunnel Engineering650-652		
13. Shear Strength of Soil578-58114. Foundation582-58715. Bearing Capacity of Shallow Foundation588-59216. Soil Exploration593-594Highway Engineering595-6271. Highway Development and Planning596-5982. Geometric Design of Highways599-6083. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design623-627C Railway Engineering628-6451. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-6451. Bridge Engineering646-6561. Bridge Engineering647-6492. Tunnel Engineering650-652		
14. Foundation582-58715. Bearing Capacity of Shallow Foundation588-59216. Soil Exploration593-594Highway Engineering595-6271. Highway Development and Planning596-5982. Geometric Design of Highways599-6083. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design623-627C Railway Engineering628-6451. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-6451. Bridge, Tunnel and Airport Engineering646-6561. Bridge Engineering647-6492. Tunnel Engineering650-652	13. Shear Strength of Soil	
15. Bearing Capacity of Shallow Foundation588-59216. Soil Exploration593-594Highway Engineering595-6271. Highway Development and Planning596-5982. Geometric Design of Highways599-6083. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design628-6451. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-6451. Bridge, Tunnel and Airport Engineering646-6561. Bridge Engineering647-6492. Tunnel Engineering650-652	6	
16. Soil Exploration593-594Highway Engineering595-6271. Highway Development and Planning596-5982. Geometric Design of Highways599-6083. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design623-627Railway Engineering628-6451. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-6451. Bridge, Tunnel and Airport Engineering647-6492. Tunnel Engineering650-652		
1. Highway Development and Planning.596-5982. Geometric Design of Highways599-6083. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design.623-627C Railway Engineering628-6451. Introduction.629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-6451. Bridge, Tunnel and Airport Engineering646-6561. Bridge Engineering647-6492. Tunnel Engineering650-652		
1. Highway Development and Planning.596-5982. Geometric Design of Highways599-6083. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design.623-627C Railway Engineering628-6451. Introduction.629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-6451. Bridge, Tunnel and Airport Engineering646-6561. Bridge Engineering647-6492. Tunnel Engineering650-652	□ Highway Engineering	595-627
2. Geometric Design of Highways599-6083. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design623-627C Railway Engineering628-6451. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-6451. Bridge, Tunnel and Airport Engineering647-6492. Tunnel Engineering650-652		
3. Traffic Engineering609-6184. Highway Materials619-6225. Pavement Design623-627C Railway Engineering628-6451. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-645C Bridge, Tunnel and Airport Engineering646-6561. Bridge Engineering647-6492. Tunnel Engineering650-652		
4. Highway Materials619-6225. Pavement Design623-627C Railway Engineering628-6451. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-645C Bridge, Tunnel and Airport Engineering646-6561. Bridge Engineering647-6492. Tunnel Engineering650-652		
5. Pavement Design		
Railway Engineering628-6451. Introduction629-6302. Rail Joints, Defect and Track Stresses631-6343. Geometric Design of Track635-6374. Point and Crossing638-6395. Sleeper, Ballast, Fastening and Fixtures640-6426. Railway Signal and Station Yard643-645D Bridge, Tunnel and Airport Engineering647-6492. Tunnel Engineering650-652		
1. Introduction.629-6302. Rail Joints, Defect and Track Stresses.631-6343. Geometric Design of Track.635-6374. Point and Crossing.638-6395. Sleeper, Ballast, Fastening and Fixtures.640-6426. Railway Signal and Station Yard.643-645□ Bridge, Tunnel and Airport Engineering.646-6561. Bridge Engineering.647-6492. Tunnel Engineering.650-652	-	
 3. Geometric Design of Track		
 3. Geometric Design of Track	2. Rail Joints, Defect and Track Stresses	631-634
 4. Point and Crossing		
 5. Sleeper, Ballast, Fastening and Fixtures		
 6. Railway Signal and Station Yard	-	
 Bridge, Tunnel and Airport Engineering		
1. Bridge Engineering		
2. Tunnel Engineering		

CIVIL & STRUCTURAL ENGINEERING

The Examination will be conducted in two stages:

- A. Paper-I (Pre) (200 marks)
- B. Paper-II (Mains) (300 marks)
- Total Written Test (500 marks)

Written Test :

Paper	Mode of Examination	Subject	Number of Questions/Max. Marks	Duration & Timing
Paper-I Objective type	Computer Based Examination	 (i) General Intelligence & Reasoning (ii) General Awareness (iii) General Engineering (CIVIL & Structural) 	50/50 50/50 100/100	2 Hours
Paper-II Objective Type	Computer Based Examination	General Engineering (CIVIL & Structural)	100/300	2 Hours

There will be **negative marking equal to one-third (1/3) of the marks** allotted to the question for each wrong answer in Paper-I & Paper-II.

SSC JE Syllabus

Indicative Syllabus: The standard of the questions in Engineering subjects will be approximately of the level of Diploma in Engineering (Civil/Mechanical) from a recognized Institute, Board or University recognized by All India Board of Technical Education. All the questions will be set in SI units. The details of the syllabus are given below.

Paper-I (Prelims)

- General Intelligence & Reasoning: The Syllabus for General Intelligence would include questions of both verbal and non-verbal type. The test may include questions on analogies, similarities, differences, space visualization, problem solving, analysis, judgment, decision making, visual memory, discrimination, observation, relationship concepts, arithmetical reasoning, verbal and figure classification, arithmetical number series etc. The test will also include questions designed to test the candidate's abilities to deal with abstract ideas and symbols and their relationships, arithmetical computations and other analytical functions.
- General Awareness: Questions will be aimed at testing the candidate's general awareness of the environment around him/her and its application to society. Questions will also be designed to test knowledge of current

events and of such matters of everyday observations and experience in their scientific aspect as may be expected of any educated person. The test will also include questions relating to India and its neighbouring countries especially pertaining to History, Culture, Geography, Economic Scenario, General Polity and Scientific Research, etc. These questions will be such that they do not require a special study of any discipline.

- General Engineering (Civil and Structural)
- Civil Engineering : Building Materials, Estimating, Costing and Valuation, Surveying, Soil Mechanics, Hydraulics, Irrigation Engineering, Transportation Engineering, Environmental Engineering.
- **<u>Structural Engineering</u>** : Theory of Structures, Concrete Technology, RCC Design, Steel Design.

Paper-II (Mains)

Civil & Structural Engineering

- Building Materials : Physical and Chemical properties, classification, standard tests, uses and manufacture/quarrying of materials e.g. buildings stones, silicate based materials, cement (Portland), asbestos products, timber and wood based products, laminates, bituminous materials, paints, varnishes.
- Estimating, Costing and Valuation : Estimate, glossary of technical terms, analysis of rates, methods and unit of measurement, Items of work earthwork, Brick work (Modular & Traditional bricks), RCC work, Shuttering, Timber work, Painting, Flooring, Plastering. Boundary wall, Brick building, Water Tank, Septic tank, Bar bending schedule, Centre line method, Mid-section formula, Trapezoidal formula, simpson's rule, Cost estimate of Septic tank, flexible pavements, Tube well, isolates and combined footings, Steel Truss, Piles and pile-caps. Valuation Value and cost, scrap value, salvage value, assessed value, sinking fund, depreciation and obsolescence, methods of valuation.
- Surveying : Principles of surveying, measurement of distance, chain surveying, working of prismatic compass, compass traversing, bearings, local attraction, plane table surveying, theodolite traversing, adjustment of theodolite, Levelling, Definition of terms used in levelling, contouring, curvature and refraction corrections, temporary and permanent adjustments of dumpy level, methods of contouring, uses of contour map, tachometric survey, curve setting, earth work calculation, advanced surveying equipment.
- Soil Mechanics : Origin of soil, phase diagram, Definitions-void ratio, porosity, degree of saturation, water content, specific gravity of soil grains, unit weights, density index and interrelationship of different parameters, Grain size distribution curves and their uses. Index properties of soils, Atterberg's limits, ISI soil classification and plasticity chart. permeability of soil, coefficient of permeability, determination of coefficient of permeability, Unconfined and confined aquifers, effective stress, quick sand, consolidation of soils, Principles of consolidation, degree of consolidation, pre-consolidation pressure, normally consolidated soil, e-log p curve, computation of ultimate settlement. Shear strength of soils, direct shear test, Vane shear test, Triaxial test. Soil compaction, Laboratory compaction test, Maximum dry density and optimum moisture content, earth pressure theories, active and passive earth pressures, Bearing capacity of soils, plate load test, standard penetration test.
- Hydraulics : Fluid properties, hydrostatics, measurements of flow, Bernoulli's theorem and its application, flow through pipes, flow in open channels, weirs, flumes, spillways, pumps and turbines.

- Irrigation Engineering : Definition, necessity, benefits, 2II effects of irrigation, types and methods of irrigation, Hydrology Measurement of rainfall, run off coefficient, rain gauge, losses from precipitation evaporation, infiltration, etc. Water requirement of crops, duty, delta and base period, Kharif and Rabi Crops, Command area, Time factor, Crop ratio, Overlap allowance, Irrigation efficiencies. Different type of canal irrigation, loss of water in canals. Canal lining types and advantages. Shallow and deep wells, yield from a well. Weir and barrage, Failure of weirs and permeable foundation, Slit and Scour, Kennedy's theory of critical velocity. Lacey's theory of uniform flow. Definition of flood, causes and effects, methods of flood control, water logging, preventive measure. Land reclamation, Characteristics of affecting fertility of soils, purposes, methods, description of land and reclamation processes. Major irrigation projects in India.
- Transportation Engineering : Highway Engineering cross sectional elements, geometric design, types of pavements, pavements materials aggregates and bitumen, different tests, Design of flexible and rigid pavements Water Bound Macadam (WBM) and Wet Mix Macadam (WMM), Gravel Road, Bituminous construction, Rigid pavement joint, pavement maintenance, Highway drainage, Railway Engineering components of permanent way sleepers, ballast, fixtures and fastening, track geometry, points and crossings, track junction, stations and yards. Traffic Engineering Different traffic survey, speed- flow-density and their interrelationships, intersections and interchanges, traffic signals, traffic operation, traffic signs and markings, road safety.
- Environmental Engineering: Quality of water, source of water supply, purification of water, distribution of water, need of sanitation, sewerage systems, circular sewer, oval sewer, sewer appurtenances, sewage treatments. Surface water drainage. Solid waste management types, effects, engineered management system, Air pollution pollutants, causes, effects, control. Noise pollution cause, health effects, control.

Structural Engineering

- Theory of structures : Elasticity constants, types of beams determinate and indeterminate, bending moment and shear force diagrams of simply supported, cantilever and over hanging beams, Moment of area and moment of inertia for rectangular & circular sections, bending moment and shear stress for tee, channel and compound sections, chimneys, dams and retaining walls, eccentric loads, slope deflection of simply supported and cantilever beams, critical load and columns, Torsion of circular section.
- Concrete Technology : Properties, Advantages and uses of concrete, cement aggregates, importance of water quality, water cement ratio, workability, mix design, storage, batching, mixing, placement, compaction, finishing and curing of concrete, quality control of concrete, hot weather and cold weather concreting, repair and maintenance of concrete structures.
- RCC Design : RCC beams-flexural strength, shear strength, bond strength, design of singly reinforced and double reinforced beams, cantilever beams. T-beams, lintels. One way and two way slabs, isolated footings. Reinforced brick works, columns, staircases, retaining wall, water tanks (RCC design questions may be based on both Limit State and Working Stress methods).
- **Steel Design** : Steel design and construction of steel columns, beams roof trusses plate girders.

Uttar Pradesh Public Service Commission

Government of UP, Prayagraj

Combined State Engineering Services

(General Recruitment/Special Recruitment)

Examination Pattern and Syllabus

The following two objective type papers will be for the Combined State Engineering Services Examination.

PAPER-I	

Subject	No. of Questions	Marks	Total Marks	Time
General Hindi	25 (Each question of	75		
	3 marks)		375	2.30 Hours
Main Subject	100 (Each question	300		
(Civil EnggI)	of 3 marks)			

|--|

Subject	No. of Questions	Marks	Total Marks	Time
General Studies	25 (Each question of	75		
	3 marks)		375	2.30 Hours
Main Subject	100 (Each question	300		
(Civil EnggII)	of 3 marks)			

Personal Examination (Interview) Total 100 Marks

375 + 375 + 100 = 850 Marks

SYLLABUS

General Hindi – Hindi syllabus will be made in such a way that the candidates under standing of Hindi language and efficient use of words can be checked. Its level will be of high school.

General Studies – The question paper of General Studies will include information focusing on current events and their scientific aspects of such things which come in everyday experience and which can be expected from an educated person. The question paper will also included such questions in the history, politics and geography of India, to which candidates will be able to answer without special study.

<u>CIVIL ENGINEERING PAPER – 1</u>

PART – A

ENGINEERING MECHANICS, STRENGTH OF MATERIALS AND STRUCTURAL ANALYSIS

Units and Dimensions, SI units, vectors, concept of force, Concept of particle and rigid body Concurrent, Non-Concurrent and parallel forces in a plane, moment of force and varignon's theorem free body diagram, conditions of equilibrium Principle of virtual work, equivalent force system.

First and second Moment of area, Mass moment of inertia, Static Friction, inclined plane and bearings, kinematics and kinetics, kinematics in Cartesion and Polar Coordinates, motion under uniform and non-uniform acceleration, motion under gravity, Kinetics of particle: Momentum and Energy principles, D' Alembert's principle, Collision of elastic bodies, rotation of rigid, bodies, simple harmonic motion.

STRENGTH OF MATERIALS

Simple Stress and Strain, Elastic constants, axially loaded compression members, Shear force and bending moment, theory of simple bending, bending stress, Shear Stress, Beams of uniform strength, Leaf Spring, close coiled helical springs, Strain Energy in direct stress, bending & shear. Deflection of beams; Macaulay's method, Mohr's Moment area

method, Conjugate beam method, unit load method, Torsion of shafts, Transmission of power, Elastic stability of columns, Euler's Rankin's and Secant formulae. Principal stresses and strains in two dimensions, Mohr's Circle, Theories of Elastic Failure, Thin and Thick cylinder, Stresses due to internal and external pressure-Lame's equations.

STRUCTURAL ANALYSIS

Castiglianio's theorems I and II, Unit load method of consistent deformation applied to beams and pin jointed trusses. Slope-deflection, moment distribution, Kani's method of analysis and column Analogy method applied to indeterminate beams and rigid frames. Rolling loads and influence lines: Influence lines for reactions of beam, shear force and bending moment at a section of beam criteria for maximum shear force and bending moment in beams traversed by a system of moving loads, influence lines for simply supported plane pin jointed trusses, Arches : Three hinged, two hinged and fixed arches, rib shortening and temperature effects, influence lines in arches, Matrix methods of analysis: Force method and displacement method of analysis of indeterminate beams and rigid frames. Plastic Analysis of beams and frames: Theory of plastic bending, plastic analysis, statical method, Mechanism method. Unsymmetrical bending: Moment of inertia, product of inertia, position of neutral axis and principal axis, calculation of bending stresses.

PART – B

DESIGN OF STRUCTURES : STEEL, CONCRETE AND MASONRY STRUCTURES. STRUCTURAL STEEL DESIGN

Structural steel: Factors of safety and load factors, riveted, bolted and welded joints and its connections, Design by working stress/limit state method of tension and compression member, beams of built up section, rivetted and welded plate girders, gantry girders, stancheons with battens and lacings, slab and gussetted column bases, Design of highway and railway bridges: Through and deck type plate girder, Warren girder, Pratt truss.

DESIGN OF CONCRETE AND MASONRY STRUCTURES

Reinforced Concrete: Working Stress and Limit State Method of design-Recommendations of B.I.S. codes, design of one way and two way slabs, stairs-case slabs, simple and continuous beams of rectangular, T and L sections, compression members under direct load with or without eccentricity, isolated and combined footings, Cantilever and counter-fort type retaining walls, Water tanks: Design requirements as per B.I.S. code for rectangular and circular tanks resting on ground, Pre-stressed concrete: Methods and systems of pre-stressing, anchorages, analysis and design of sections for flexure based on working stress, losses of pre-stress, Earth quake resistant design of building as per BIS code. Design of brick masonry as per I. S. Codes, Design of masonry retaining walls.

<u>PART – C</u>

Building Materials, Construction Technology, Planning and Management Building Materials

Physical properties of construction materials with respect to their use: stones bricks, tiles, lime, glass, cement, mortars, Concrete, concept of mix design, Pozzolans, plasticizers, super plasticizers, Special concrete: roller compacted concrete, mass concrete, self compacting concrete, Ferro cement, Fiber reinforced concrete, high strength concrete, high performance concrete, Timber: properties, defects and common preservation treatments, Use and selection of materials for various uses e.g. Low cost housing, mass housing, high rise buildings.

Constructions Technology, Planning and Management

Masonry constructions using brick, stone, construction detailing and strength characteristics paints, varnishes, plastics, water proofing and damp proofing materials. Detailing of walls, floors, roofs, staircases, doors and windows. Plastering, pointing, flooring, roofing and construction features. Retrofitting of buildings, Principle of planning of building for residents and specific uses, National Building code provisions and uses. Basic principles of detailed and approximate estimating, specifications, rate analysis, principles of valuation of real property. Machinery for earthwork, concreting and their specific uses, factors affecting selection of construction equipments, operating cost of equipments. Construction activity, schedules, organizations, quality assurance principles. Basic principle of network CPM and PERT uses in construction monitoring, cost optimization and resource allocation. Basic principles of economic analysis and methods. Project profitability: Basis principles of financial planning, simple toll fixation criterions.

<u> PART – D</u>

GEO TECHNICAL ENGINEERING AND FOUNDATION ENGINEERING

Types of soils, phase relationships, consistency limits particles size distribution, classifications of soils, structure and clay mineralogy. Capillary water, effective stress and pore water pressure, Darcy's Law, factors affecting permeability, determination of permeability, permeability of stratified soil deposits. Seepage pressure, quick sand condition, compressibility and consolidation, Terzaghi's theory of one dimensional consolidation, consolidation test.

Compaction of soil, field control of compaction total stress and effective stress parameters, pore pressure parameters, shear strength of soils, Mohr Coulomb failure theory, shear tests.

Earth pressure at rest, active and passive pressures, Rankin's theory Coulomb's wedge theory, Graphical method of earth pressure on retaining wall, sheetpile walls, braced excavation, bearing capacity, Terzaghi and other important theories, net and gross bearing pressure.

Immediate and consolidation settlement, stability of slope, total stress and effective stress methods, conventional methods of slices, stability number.

Subsurface exploration, methods of boring, sampling, penetration tests, pressure meter tests, essential features of foundation, types of foundation, design criteria, choice of type of foundation, stress distribution in soils, Boussinessq's theory, Westergaard method, Newmark's chart, pressure bulb, contact, pressure, applicability of different bearing capacity theories, evaluation of bearing capacity from filed tests, allowable bearing capacity, settlement analysis, allowable settlement, proportioning of footing, isolated and combined footings, rafts, pile foundation, types of piles, plies capacity, static and dynamic analysis, design of pile groups, pile load test, settlement of piles lateral loads, foundation for bridges, Ground improvement techniques: sand drains, stone columns, grouting, soil stabilization geotextiles and geomembrane, Machine foundation: Natural frequency, design of machine foundations based on the recommendation of B.I.S. codes.

CIVIL ENGINEERING PAPER- II

Part – A

FLUID MECHANICS, OPEN CHANNEL FLOW, HYDRAULIC MACHINES AND <u>HYDROPOWER ENGINEERING</u>

Fluid Mechanics: Fluid properties and their roles in fluid motion, fluid statics including forces acting on plane and curved surfaces, Kinematics and Dynamics of Fluid flow:

Velocity and acceleration, stream lines, equation of continuity, irrotational and rotational flow, velocity potential and stream functions, flownet, methods of drawing flownet, source and sink, flow separation, free and forced vorties.

Flow control volume equation, continuity, momentum and energy equations, Navier-Strokes equation, Euler's equation of motion and application to fluid flow problems, pipe flow, plane, curved, stationary and moving vanes sluice gates, weirs, orifice meters and Venturi meters.

Dimensional Analysis and Similitude: Buckingham's Pi-theorem, dimensionless parameters, similitude theory, model laws, undistorted and distorted models.

Laminar Flow: Laminar flow between parallel, stationary and moving plates, flow through pipes.

Boundary Layer: Laminar and turbulent boundary layer on a flat plate, laminar sub-layer, smooth and rough boundaries, submerged flow, drag and lift and its applications.

Turbulent flow through pipes: Characteristics of turbulent flow, velocity distribution, pipe friction factor, hydraulic grade line and total energy line, siphons, expansion and contractions in pipes pipe networks, water hammer in pipes and surge tanks.

Open Channel Flow: Flow types, uniform and non uniform flows, momentum and energy correction factors, Specific energy and specific force, critical depth, resistance equations and roughness coefficient, rapidly varied flow, flow in transitions, Brink flow, Hydraulic jump and its applications, waves and surges, gradually varied flow, classification of surface profiles, control section, Integration of varied flow equation and their solution.

HYDRAULIC MACHINES AND HYDROPOWER

Centrifugal pumps-Types, characteristics, Net Positive Suction-head (NPSH), specific speed, Pumps in series and parallel.

Reciprocating pumps, Air vessels, Hydraulic ram, efficiency parameters, Rotary and positive displacement pumps, diaphragm and jet pumps.

Hydraulic turbines: types, classification, Choice of turbines, performance parameters, controls, characteristics, specific speed.

Principles of hydropower development: Types, layouts and component works, surge tanks, 'types and choice, Flow duration curves and dependable flow, Storage and pondage, Pumped storage plants, Special types of hydel plants.

<u>Part – B</u>

Hydrology and Water Resources Engineering

Hydrology: Hydrologic cycle, precipitation, evaporation, transpiration, infiltration, overland flow, hydrographs, flood frequency analysis, flood routing through a reservoir, channel flow routing- Muskingam method.

Ground Water flow: Specific yield, storage coefficient, coefficient of permeability, confined and unconfined aquifers, radial flow into a well under confined and unconfined conditions, Open wells and tube wells.

Ground and surface water recourses single and multipurpose projects, storage capacity of reservoirs, reservoir losses, reservoir sedimentation.

Water requirements of crops consumptive use, duty and delta, irrigation methods, Irrigation efficiencies.

Canals: Distribution systems for cannal irrigation, canal capacity, canal losses, alignment of main and distributory canals, Design of cannal by kennedy's and Lacey's thoeorie, Water logging and its prevention.

Diversion head works: Compenents, Principles and design of weirs on permeable and impermeable foundations, Khosla's theory, Bligh's creep theory Storage works.

Cross drainage works.

Types of dams, design principles of gravity and earth dams, stability analysis. Spillways: Spillway types energy dissipation.

River training: Objectives of river training, methods of river training and bank protection.

<u>Part – C</u>

Transportation Engineering

Highway Engineering: Principles of Highway alignments, classification and geometric design, elements and standards for roads.

Pavement: flexible and rigid pavements Design principles and methodology. Construction methods and materials for stabilized soil. WBM, Bituminous works and Cement Concrete roads.

Surface and sub-surface drainage arrangements for roads, culvert structures. Pavement distresses and strengthening by overlays.

Traffic surveys and their application in traffic planning, Typical design features for channelized, intersection, rotary etc., signal designs, standard traffic signs and markings.

Railway Engineering: Permanent way, ballast, sleeper, chair and faslenings, points, crossings, different types of turn outs, cross-over, setting out of points, Maintenance of track, super elevation, creep of rails ruling gradients, track resistance tractive effort, curve resistance, Station yards and station buildings, platform sidings, turn outs, Signals and interlocking, level crossings.

Air port Engineering: Layouts, Planning and design.

<u>Part – D</u>

Environmental Engineering

Water supply: Estimation of water demand, impurities in water and their significance, physical, chemical and bacteriological parameters and their analysis, waterborne diseases, standards for potable water.

Water collection & treatment: Intake structures, principles and design of sedimentation tank, coagulation cum flocculation units slow sand filter, rapid sand filter and pressure filter, theory & practices of chlorination, water softening, removal of taste and salinity, Sewerage Systems, Domestic and industrial wastes, storm, sewage, separate and combined systems, flow through sewers, design of sewers.

Waste water characterization: Solids, Dissolved oxygen (DO), BOD COD, TOC, and Nitrogen, Standards for disposal of effluent in normal water course and on to land.

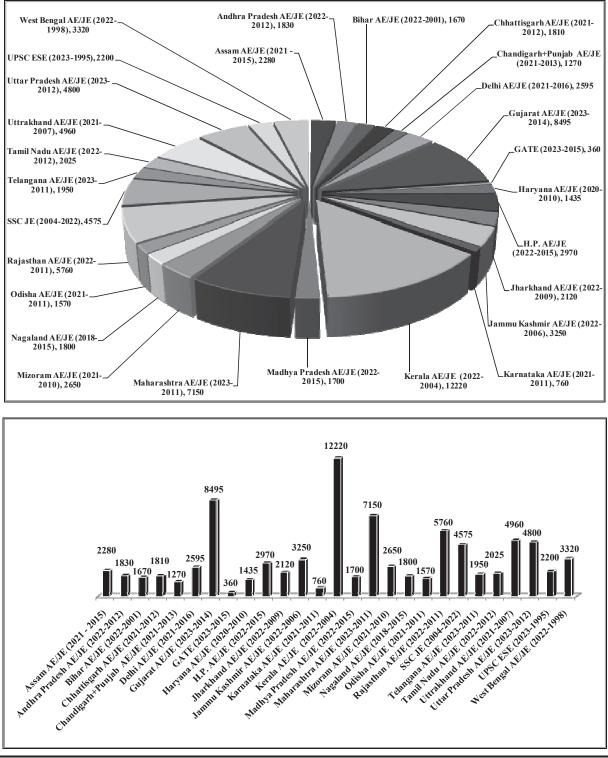
Waste water treatment: Principles and design of wastewater Treatment units--,Screening, grit chamber, sedimentation tank activated sludge process, trickling filters, oxidation ditches, oxidation ponds, septic tank; Treatment and disposal of sludge; recycling of waste water.

Solid waste management: Classification, Collection and disposal of solid waste in rural and urban areas, Principles of solid waste management.

Environmental pollution: Air and water pollution and their control acts. Radioactive waste and their disposal Environmental impact assessment of Thermal power Plants, mines and river valley projects, Sustainable development.

<u>Part – E</u> Survey and Engineering Geology

(a) **Surveying:** Common methods and instruments for distance and angle measurements in Civil Engineering works, their use in plane table traverse survey, levelling, triangulation, contouring and topographical maps. Survey layouts for culverts canal, bridge, roads, railway alignment and buildings.


Basic principles of photogrammetry and remote sensing.

Introduction to Geographical information system.

Engineering Geology

Basic concepts of Engineering geology and its applications in projects such as dams, bridges and tunnels.

Trend Analysis of Exam (SSC JE/ ESE/State PSC & Other Exam) Papers Included Through Pie Chart and Bar Graph

Civil Engineering Smart Scan

13

YCT

22)
17-2022
201
Chart (
vsis (
Analy
<u> </u>
opic
nT
Exal
nline
il O
Civ
JE
SSC JE Civil O

22C 1E 10 November 2022 (M)	6	8	8	0	5	6	11	6	6	0	0	9	10	6	10	001
SSC 1E 12 November 2022 (E)	6	7	8	1	6	6	10	10	6	0	1	10	6	6	8	100
SSC 1E 12 November 2022 (M)	6	7	9	0	6	6	10	9	10	0	4	7	8	s	10	100
22C 1E 14 November 2022 (M)	×	7	8	1	8	6	10	8	6	0	2	9	12	6	9	100
SSC 1E 23 March 2021 (E)	6	7	10	0	7	7	10	10	7	0	1	10	6	4	9	100
SSC 1E 23 March 2021 (M)	6	11	8	0	4	7	10	8	7	1	0	11	7	8	9	100
22C 1E 11 Dec. 2020 (E)	6	9	7	0	8	5	10	9	10	0	0	13	8	5	7	100
28C 1E 30 Oct. 2020 (E)	6	7	10	2	8	4	10	7	10	1	1	11	8	3	9	100
22C 1E 30 Oct. 2020 (M)	10	7	10	2	6	8	9	7	6	1	0	12	8	5	9	100
22C 1E 53 Oct. 2020 (M)	7	8	12	0	6	4	9	8	9	1	0	12	6	5	10	100
22C 1E 58 Oct. 2020 (E)	11	7	11	2	8	5	11	8	7	0	0	10	8	4	8	100
28C 1E 52 86b. 2019 (M)	×	10	9	1	4	4	10	8	12	3	0	10	7	4	10	100
28C 1E 53 26b. 2019 (E)	7	10	6	1	5	4	8	5	10	5	0	6	11	4	12	100
28C 1E 53 86b. 2019 (M)	10	9	11	4	7	4	10	8	7	9	0	10	5	4	8	100
28C 1E 59 Jan. 2018 (E)	11	5	11	3	8	16	7	2	11	2	1	7	4	10	2	100
SSC 1E 29 Jan. 2018 (M)	10	S	7	1	4	17	10	3	10	10	0	11	3	7	2	100
SSC 1E 27 Jan. 2018 (E)	10	9	13	4	4	13	6	3	8	11	0	6	2	9	2	100
SSC JE 27 Jan. 2018 (M)	10	9	13	2	7	15	10	3	10	1	0	٢	3	11	2	100
SSC 1E 25 Jan. 2018 (E)	10	4	13	2	6	14	8	3	11	2	0	10	3	10	1	100
SSC 1E 25 Jan. 2018 (M)	Ξ	3	12	0	7	15	8	S	10	12	0	12	1	1	3	100
SSC 1E 24 Jan. 2018 (E)	12	8	6	0	10	8	10	S	11	3	2	6	5	9	2	100
SSC 1E 24 Jan. 2018 (M)	15	10	10	2	3	15	10	7	10	0	0	10	0	7	1	100
22C 1E 53 180. 2018 (E)	Ξ	5	15	0	4	17	6	2	13	5	0	6	2	4	4	100
28C 1E 53 180. 2018 (M)	10	8	11	3	2	16	6	3	8	2	3	10	2	11	2	100
28C 1E 55 Jan. 2018 (E)	10	4	8	2	7	15	6	2	10	5	0	10	5	8	2	100
22C 1E 55 180° 5018 (M)	10	10	8	7	S	14	13	ŝ	3	6	2	10	2	2	3	100
22C 1E 4ա March 2017 (E)	10	7	4	1	11	21	10	9	2	1	0	0	7	17	3	100
28C 1E 4ա March 2017 (M)	13	5	6	3	10	19	10	3	S	3	0	0	4	14	2	100
22C 1E 319 March 2017 (E)	Ξ	4	7	4	8	19	10	2	14	1	1	2	3	13	1	100
22C 1E 3 ₁₉ March 2017 (M)	Ξ	5	6	4	17	20	6	2	3	5	1	4	3	5	2	100
22C 1E 5 _{uq} March 2017 (E)	10	7	4	2	4	20	6	1	18	5	1	2	9	6	2	100
SSC 1E 2 nd March 2017 (M)	6	5	6	1	19	16	10	1	12	2	0	6	0	5	2	100
22C 1E 124 March 2017 (E)	∞	9	12	2	12	21	10	1	3	0	0	2	2	16	2	100
88C JE I24 March 2017 (M)	×	4	7	3	6	17	10	1	12	0	1	3	3	20	2	100
KEVB	HYDRAULICS	S.M.F.E	B.M	B.C.M.E	S.0.M	C.T	SURVEYING	P.H.E	R.C.C	MECHANICS	C.M.A.E.	E.C.V	H.R.B	D.S.M.S	I.E	TOTAL

SMFE-SOIL MECHANICS AND FOUNDATION ENGINEERING, BM-BUILDING MATEARIAL, BCME-BUILDING CONSTRUCTIONS AND MAINTENANCE ENGINEERING

SOM-STRENGTHS OF MATERIAL, CT-CONCRETE TECHNOLOGY, PHE-PUBLIC HEALTH, ENGINEERING, IE-IRRIGATION ENGINEERING R.C.C.-REINFORCED CONCRETE TECHNOLOGY, CMAED-CONSTRUCTION MANAGEMENT, PUBLIC WORKS ACCOUNTS AND ENTREPRENEURSHIP DEVELOPMENT ECV-ESTIMATING, COSTING AND VALUATION, HRB-HIGHWAY RAILWAY AND BRIDGE ENGINEERING. DSMS- DESIGN OF STEEL AND MASONRY STRUCTURES

ESE Subject-wise Analysis

Year	BMC	CPM	E.E.	FM	Hydrol ogy	T.E.	Irrigati on	RCC	ΥS	SOM	Soil Mechanics	Steel	Survey
2023	16	12	10	14	1	13	12	11	9	20	14	12	6
2022	13	11	13	13	2	11	8	14	6	16	14	14	12
2021	13	13	11	13	4	13	10	15	6	14	12	13	13
2020	10	12	14	13	4	14	4	16	6	17	13	13	14
2019	13	12	11	12	9	12	8	12	8	20	12	12	12
2018	13	3	16	33	7	10	4	6	10	15	16	6	5
2017	13	4	14	17	10	10	9	6	11	22	24	9	4
2016	30	16	20	53	4	12	10	16	8	27	20	11	13
2015	22	13	26	21	6	16	6	19	10	39	24	17	15
2014	26	16	22	22	15	12	6	13	8	30	22	25	20
2013	22	33	22	46	10	8	9	17	16	22	16	13	6
2012	27	8	26	31	10	5	3	18	11	29	29	21	22
2011	20	13	20	34	3	13	11	30	11	15	18	27	19
2010	20	24	15	26	10	17	6	11	14	24	27	26	17
2009	15	18	18	20	10	18	12	24	15	26	27	21	16
2008	27	12	21	16	9	28	3	15	18	21	30	21	15
2007	26	13	20	30	13	20	7	22	13	23	21	23	6
2006	20	11	18	29	15	19	8	25	20	20	20	23	12
2005	18	14	27	13	5	24	9	25	15	25	37	23	8
2004	21	13	29	22	13	15	9	20	17	20	30	24	10
2003	22	19	19	30	11	19	6	22	10	26	22	21	10
Ę		, ,].										

(T.E.) = Transportation Engineering

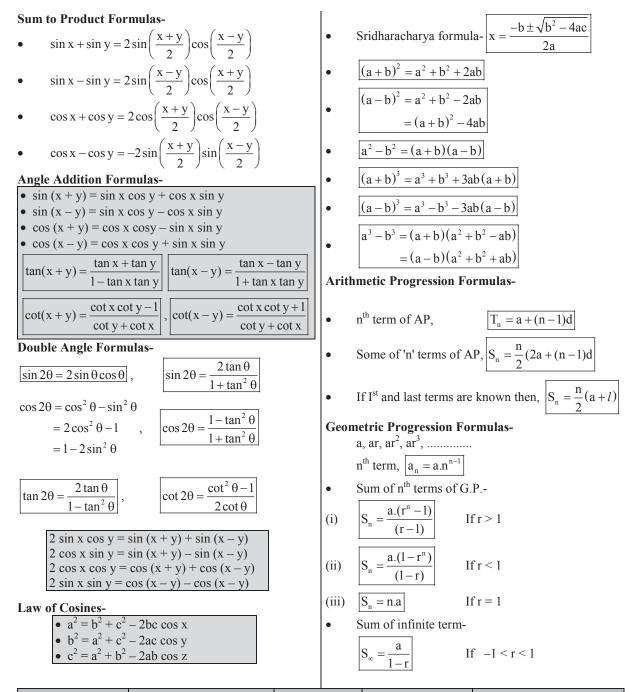
	vey									_									_													
J.	Survey	3	3	4	2	3	4	5	4	2	4	4	4	4	9	5	5	9	9	5	5	5	3	5	3	5	6	10	10	0	0	<
C400	Iaano	2	1	1	2	7	2	2	с	5	4	ю	5	2	2	4	4	4	4	4	2	5	ю	5	4	9	5	9	9	6	12	10
Coll Machanian	SOII MECHAINCS	10	10	6	10	10	6	11	6	13	15	14	15	13	13	17	15	12	15	12	14	14	15	15	17	16	25	23	21	24	26	00
MOS	MIDO	4	7	4	9	7	7	9	3	5	7	7	5	9	8	9	7	5	9	2	6	9	6	7	6	12	17	13	21	8	13	
▼ 0	PA	5	4	4	4	5	2	9	7	4	9	2	1	5	1	3	3	4	0	8	7	6	0	0	3	2	9	6	9	10	6	, ,
220	NUL	4	2	3	3	4	8	5	4	4	2	6	7	5	3	9	5	5	7	7	3	5	8	8	5	9	12	12	11	14	12	1 2
Tuniantian	IFFIgauon	2	1	1	2	2	2	1	3	3	4	0	1	2	2	0	1	1	2	0	2	2	2	2	4	3	9	4	3	8	3	V
Undualant	Injuroiogy	3	2	2	2	4	4	1	4	3	3	5	4	3	4	2	3	2	2	2	3	6	7	5	1	4	1	6	6	9	4	11
	підимау	3	5	6	7	4	4	4	7	4	6	6	6	6	7	6	7	10	6	10	6	6	10	11	7	10	20	16	14	12	15	0
EM	I IVI	5	5	5	9	5	4	9	3	5	6	6	7	8	8	7	7	12	6	13	10	6	4	7	7	7	15	16	17	17	26	10
L L		8	10	8	6	10	6	8	8	9	8	10	10	10	11	10	10	9	10	10	10	8	10	6	6	14	14	15	15	20	21	<i>دد</i>
Vacu	I CAL	2023 Set-1	2023 Set-2	2022 Set-1	2022 Set-2	2021 Set-1	2021 Set-2	2020 Set-1	2020 Set-2	2019 Set-1	2019 Set-2	2018 Set-1	2018 Set-2	2017 Set-1	2017 Set-2	2016 Set-1	2016 Set-2	2015 Set-1	2015 Set-2	2014 Set-1	2014 Set-2	2013	2012	2011	2010	2009	2008	2007	2006	2005	2004	2002

GATE Subject-wise Analysis

Appendix

Units								
Measurement	Units	Symbol						
Length	Meter	m						
Mass	Kilogram	kg						
Force	Newton	Ν						
Time	Second	S						
Electric current	Ampere	А						
Temperature	Kelvin	K						
Luminous Intensity	Candela	Cd						
Prefixes-								
-	eek Prefixes							
Prefix	symbol	value						
Deca	da	10 ¹						
Hecto	h	10 ²						
Kilo	K	10 ³						
Mega	М	10^{6}						
Giga	G	10 ⁹						
Tera	Т	10^{12}						
Peta	Р	10^{15}						
Exa	Е	10 ¹⁸						
Zetta	Z	10^{21}						
Yotta	Y	10 ²⁴						
Latin Prefixes								
Prefix	symbol	value						
Deci	d	10^{-1}						
Centi	с	10^{-2}						
Milli	m	10^{-3}						
Micro	μ	10 ⁻⁶						
Nano	n	10^{-9}						
Pico	р	10^{-12}						
Femto	f	10^{-15}						
Atto	a	10^{-18}						
Zepto	Z	10^{-21}						
Yocto	y	10^{-24}						
Units Conversion-								
	Length							
1 m = 3.281 ft		0.3048 m						
1 km = 0.622 mile	1 mile =							
1 cm = 0.394 inch		2.54 cm						
$1 \text{ mm} = 10^3 \text{ micron}$	1 micron =	10 ⁻⁰ m						
	Area							
$1 \text{ m}^2 = 10.761 \text{ ft}^2$	1 ft^2	$= 0.093 \text{ m}^2$						
$1 \text{ km}^2 = 10^6 \text{ m}^2 = 100 \text{ km}^2$		$= 2.59 \text{ km}^2$						
= 247 acres	= 251 Ha=	= 640 acres						
$1 \text{ Ha} = 10^4 \text{ m}^2 = 2.47$		40 sq. yards						
	Volume							
$1 \text{ m}^3 = 35.307 \text{ ft}^3$	$1 \text{ ft}^3 =$	0.02832 m^3						

T	RIGONOM θ	ETRIC ' 0°	TABLE- 30°	45°	60°	90°
	sinθ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
	cosθ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
	tanθ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	x
	cotθ	8	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
	secθ	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	x
	cosecθ	8	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1

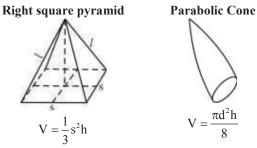

Reciprocal Identities	Pythagorean	Half-Angle Formulas
$\csc \theta = \frac{1}{\sin \theta}$	$\sin^2\theta + \cos^2\theta = 1$	$\sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{2}}$
$\sec \theta = \frac{1}{\cos \theta}$	$\sec^2 \theta = 1 + \tan^2 \theta$	$\cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1+\cos\theta}{2}}$
$\cot \theta = \frac{1}{\tan \theta}$	$\sec^2 \theta = 1 + \cot^2 \theta$	$\tan\left(\frac{\theta}{2}\right) = \frac{1 - \cos\theta}{\sin\theta}$

- $\sin^2 \theta + \cos^2 \theta = 1$
- $\sec^2 \theta = 1 + \tan^2 \theta$
- $\csc^2\theta = 1 + \cot^2\theta$

•
$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

• $\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$
• $\sin x \cos y = \frac{1}{2} [\sin(x + y) + \sin(x - y)]$
• $\cos x \sin y = \frac{1}{2} [\sin(x + y) - \sin(x - y)]$

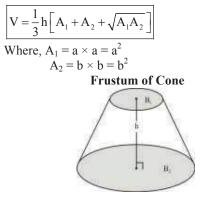
Civil Engineering Smart Scan

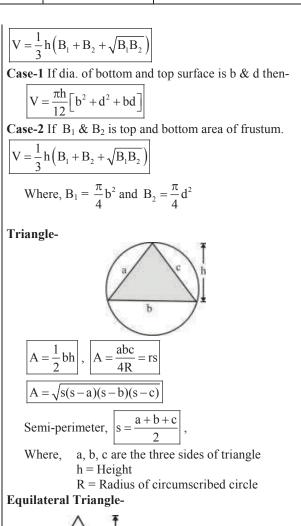

YCT

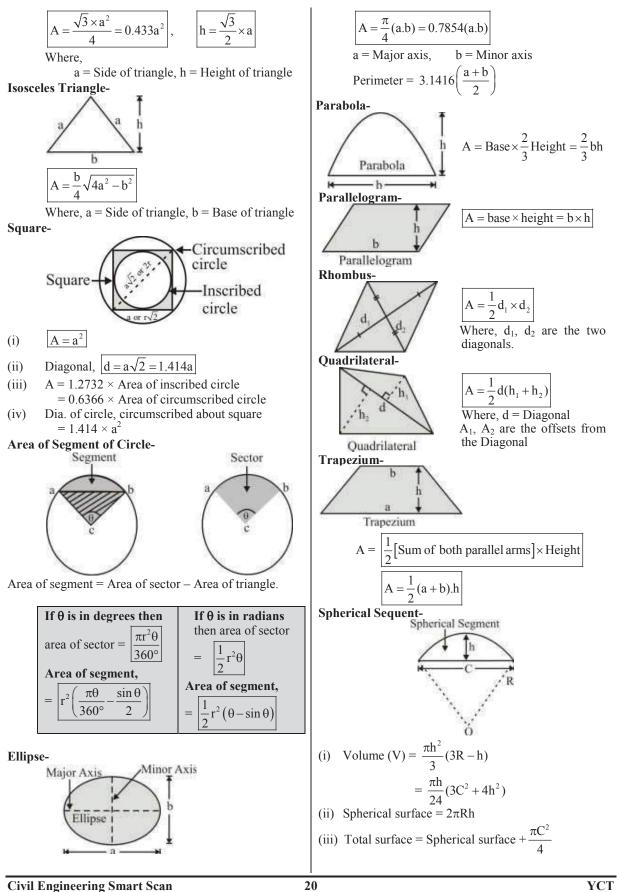
Name of the solid	Figure	Volume	Lateral/Curved surface area	Total surface area
Cuboid	h	<i>l</i> bh	2lh + 2bh or 2h(l + b)	2lh + 2bh + 2lb or 2(lh + bh + lb)
Cube	a	a ³	4a ²	$4a^2 + 2a^2$ or $6a^2$

YCT

Right circular cylinder	h r	$\pi r^2 h$	2πrh	$2\pi r h + 2\pi r^2$ or $2\pi r (h + r)$
Right circular cone	h	$\frac{1}{3}\pi r^2h$	πrl	$\pi r l + \pi r^2$ or $\pi r (l + r)$
Sphere		$\frac{4}{3}\pi r^3$	$4\pi r^2$	$4\pi r^2$
Hemisphere	L L	$\frac{2}{3}\pi r^3$	$2\pi r^2$	$2\pi r^2 + \pi r^2 \text{ or } 3\pi r^2$


Truncated Pyramid/Column Footing-




Case-1 If 'a' and 'b' is the side of pyramid.

$$V = \frac{1}{3}h(a^2 + b^2 + ab)$$

Case-2 If A_1 and A_2 is the area of bottom and top surface.

AMENDMENT NO. 5 – JULY, 2019 TO

IS 456: 2000 PLAIN AND REINFORCE CONCRETE - CODE OF PRACTICE

S. No.	Clause	Before Amendment	After Amendment
1	5.1	Cement-	
		Types of recommended cement:	Note-
		(a) 33 grade ordinary Portland cement (OPC) conforming to IS 269	According to amendment No. 5 July 2019 Clause No.5.1 (b) and (c) Delete.
		(b) 43 grade ordinary Portland cement (OPC) conforming to IS 8112	
		(c) 53 grade ordinary Portland cement (OPC) conforming to IS 12269	
		(d) Rapid hardening Portland cement conforming to IS 8041	
		(e) Portland slag cement conforming to IS 455	
		(f) Portland pozzolana cement (fly ash based) (PPC) conforming to IS 1489 (Part-I)	
		(g) Portland pozzolana cement (calcined clay based) conforming to IS 1489 (Part-II)	
		(h) Hydrophobic cement conforming to IS 8043	
		(j) Low heat portland cement conforming to IS 12600	
		(k) Sulphate resisting portland cement conforming to IS 12330	
2.	5.2	Mineral Admixtures	Mineral Admixture - 'Mineral admixtures listed below may be used along with ordinary Portland cement. Uniform blending of the mineral admixtures with the cement should be ensured.'
3.	5.2.1	Pozzolanas - Pozzolanic materials conforming to relevant Indian Standards may be used with the permission of the engineer-in-charge, provided uniform blending with cement is ensured.	Pozzolanas - Pozzolanic materials conforming to relevant Indian Standards may be used with the permission of the engineer-in-charge.
4.	5.2.1.1.	Fly ash (pulverized fuel ash) - Fly ash conforming to Grade 1 of IS 3812 may be used as part replacement of ordinary Portland cement provided uniform blending with cement is ensured.	Fly ash (pulverized fuel ash) - Fly ash conforming to Grade 1 of IS 3812 may be used as part replacement of ordinary Portland cement.
5.	5.2.1.2	Silica fume - Silica fume conforming to a standard approved by the deciding authority may be used as part replacement of cement provided uniform blending with the cement is ensured.	Silica fume - Silica fume conforming to a standard approved by the deciding authority may be used as part replacement of cement.
6.	5.2.1.4	Metakaoline - Metakaoline having fineness between 700 to 900 m ² /kg may be used as pozzolanic material in concrete.	Metakaoline - Metakaolin conforming to IS 16354 may be used as part replacement of ordinary Portland cement,'
7.	5.2.2	Ground granulated Blast Furnace Slag – Ground granulated blast furnace slag obtained by grinding granulated blast furnace slag conforming to IS 12089 may be used as part replacement of ordinary Portland cements Provided uniform blending with cement is ensured.	Ground granulated Blast Furnace Slag – Ground granulated blast furnace slag conforming to IS 16714 may be used as part replacement of ordinary Portland cement.
		Newly added a	mendments
8.	5.2.3	Precautions	(after Amendment No.5 July 2019)
9.	5.2.3.1	For concrete made with mineral admixtures, the se different from those of concrete made with ordinary	Portland cement alone
			(after Amendment No.5 July 2019)

YCT

10.	5.2.3.2	Concrete containing mineral ac because of its low bleeding ch concrete is protected against dry	aracteristics. The p	roblem may be av l after finishing.	voided by ens	suring that such			
11.	5.2.3.3	shrinkage are not likely to be	(after Amendment No.5 July 2019) ome other properties of concrete such as modulus of elasticity, tensile strength, creep and prinkage are not likely to be significantly different. For design purposes, it will be sufficiently ccurate to adopt the same values as those used for concrete made with ordinary Portland cement tone. (after Amendment No.5 July 2019)						
12.	5.2.3.4	Mixes that contain very fine mi finish.	fixes that contain very fine mineral admixtures such as silica fume, can be sticky and difficult to						
13.	5.2.3.5		Concrete made using blended cements such as Portland Pozzolana cement and Portland slag cement nall also adhere to 5.2.3.1 , 5.2.3.2 and 5.2.3.3 . (<i>after Amendment No.5 July 2019</i>)						
14.	11.0 Formwork	Type Formwork (a) Vertical formwork to columns, walls, beams (b) Soffit formwork to slabs (Props to be refixed immediately after removal of formwork) (c) Soffit formwork to beams (Props to be refixed immediately after removal of formwork) (d) Props to slabs (i) Spanning up to 4.5 m (ii) Spanning over 4.5 m (iii) Spanning up to 6 m (ii) Spanning over 6 m	Minimum Period Before Striking Formwork 16–24 h RRB SSE Secundrabad-01-09- 2015 (Shift-I) 3 days 7 days 7 days UPPCL JE 02-01- 2021 (Shift-I) SSB HP-18-11-2018 RRB SSE Secundrabad-01-09- 2015 (Shift-II) 14 days LMRC AE-2017 (Shift-I) 21 days	Type of Formworki) Vertical formworkformworkto columns, walls, beamsii) Soffit formwork to slabs (Props to be refixed immediate ly after removal of formwork)iii) Soffit form work to beams (props to be refixed immediate ly after removal of formwork)iii) Soffit form work to beams (props to be refixed immediate ly after removal of formwork)iv) Props to slabs: 1) Spanning up to 4.5 m 2) spanning	minimum Beforefor concrete made using OPC16-24h3 days7 days7 days14 days	Period For concrete Made Using Cement Other than OPC or Using Mineral Admixtures Like Fly Ash and slag 16–24 h 7 days 10 days 10 days 10 days			

			 v) Props to beams and arches: 1) Spanning up to 6 m 2) Spanning over 6 m 	14 days 21 days	14 days 21 days
			Note- Utmost provide props. immediately at panel and not of the entire sla	The props sha fter stripping e after stripping	all be provided each shuttering
15.	11.3.1	In case of use of cements other than OPC or in case of use of mineral admixtures like fly ash and slag, in lieu of the minimum period specified in	col 3, the stripp in accordance v col 2, provided to ensure that the is achieved: (a) 3 days : 45 pe (b) 7 days : 60 pe (c) 14 days : 85	with the provi concrete cube e following mi crcent of specific rcent of specific	isions of 11.3.1 testing is done inimum strength ed strength ed strength
16.	13.3.1	Concrete shall be compacted using mechanical vibrators complying with IS 2505, IS 2506, IS 2514 and IS 4656. Over vibration and under vibration of concrete are harmful and should be avoided. Vibration of very wet mixes should also be avoided.	Concrete shal mechanical vibr IS 2506 and IS	ators complyir	npacted using ag with IS 2505 ,

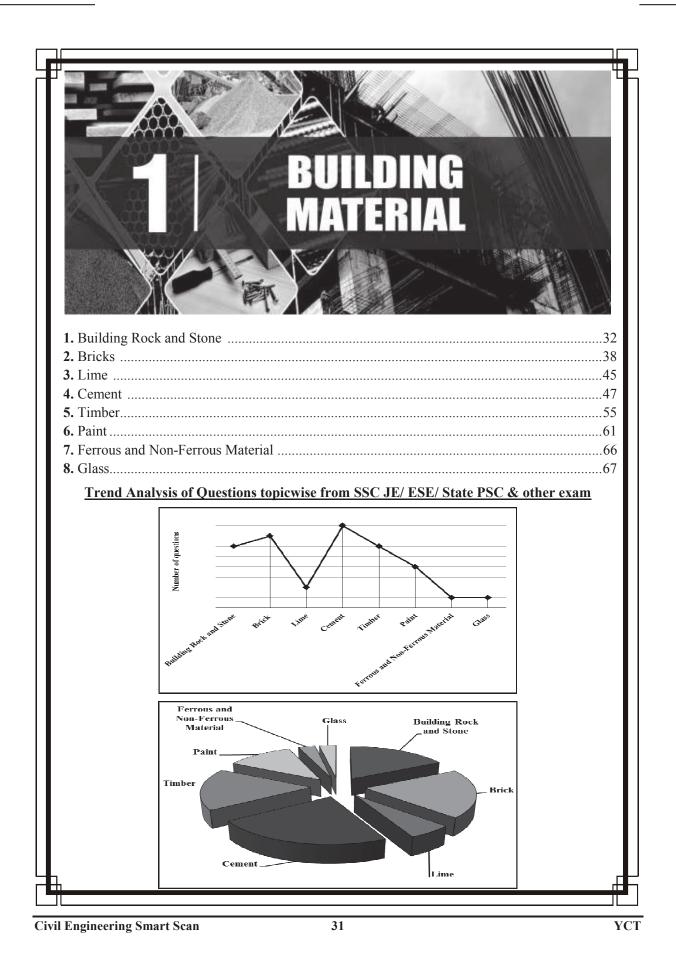
AMENDMENT NO. 4 – MAY, 2013 TO

IS 456: 2000 PLAIN AND REINFORCE CONCRETE - CODE OF PRACTICE

S. No.	Clause	Before Amendment	After Amendment
1.	5.3 Aggregates	Aggregates shall comply with the requirements of IS 383. As far as possible preference shall be given to natural aggregates.	Aggregates shall comply with the requirements of IS 383
2.	5.3.4	Coarse and fine aggregate shall be batched separately. All-in-aggregate may be used only where specifically permitted by the engineer-in-charge.	Coarse and fine aggregate shall be batched separately.
3.	5.4 Water	Water used for mixing and curing shall be clean and free from injurious amounts of oils, acids, alkalis, salts, sugar, organic materials or other substances that may be deleterious to concrete or steel.	Water, natural or treated, used for mixing and curing shall be clean and free from injurious amounts of oils, acids, alkalis, salts, sugar, organic materials or other substances that may be deleterious to concrete or steel.
4.	5.4.3 Sea Water	Mixing or curing of concrete with sea water is not recommended because of presence of harmful salts in sea water. Under unavoidable circumstances sea water may be used for mixing or curing in plain concrete with no embedded steel after having given due consideration to possible disadvantages and precautions including use of appropriate cement system.	Sea water shall not be used for mixing or curing of concrete because of presence of harmful salts. Under unavoidable circumstances sea water may be used for mixing or curing in plain concrete with no embedded steel after having given due consideration to possible disadvantages and precautions including use of appropriate cement system.
5.	5.5.5 New Clause added		The amount of admixture added to a mix shall be recorded in the production record. Redosing of admixtures is not normally permitted. In special circumstances, if necessary, additional dose of admixture may be added at a project site and mixed adequately in mixer itself to regain the workability of concrete with the mutual agreement between the producer/supplier and the purchaser/user of concrete. However the producer/supplier shall assure the ultimate quality of concrete supplied by him and maintain record of quantity and time of addition.

6.	Table 2 – Grades of Concrete	Group	Grade designation	Specified characteristic compressive strength	Group	Grade designation	Specified characteristic
				of 150 mm cube at 28			compressive strength of 150
				days in N/mm ²			mm cube at 28
				UPSSSC JE 16-4-2022			days in N/mm ²
			M 10	10			UPSSSC JE 16-4-20
		Ordinary concrete	M 15	15 SSC IE 02 02 2017		M 10	10
		concrete		SSC JE-03-03-2017 (Even.)	Ordinary concrete	M 15	15 Andmon & Nisch
			M 20	20	concrete		Andman&Nicoba APWD JE Civil 27
			M 25	NBCC JE-2018 (Morn.) 25			7-201 SSC JE-03-03-201
			M 25 M 30	30			SSC JE-05-05-20
			M 30	35		M 20	20
		Standard	M 30	40			KPSC AE Civ
		Concrete	M 45	45			26-2-202 NBCC JE-201
			M 50	50			(Morr
			M 55	55		M 25	25
			M 60	60			Andman & Nicoba Plan.Asst. 6-3
			M 65	65	Standard		Plan.Asst. 6 2023 (Shift-
		High strength Concrete	M 70	70	Concrete	M 30	30
		Concrete	M 75	75		M 35	35
			M 80	80		M 40	40
		Note-				KPSC AE	
			nation of cond	crete mix M refers to		<u>Civil</u> 26-2-2023	
				to the specified		M 45	45
				150 mm size cube at 28		M 50	50
				2		101 20	50
			essed in N/mm			M 55	55
		(2) For concr	ete of compr	essive strength greater		M 55 M 60	55 60
		(2) For concr than M 5 standard n	ete of compr 5, design pa nay not be ap	essive strength greater rameters given in the oplicable and the value		M 55 M 60 M 65	55 60 65
		(2) For concrution M 5 standard m may be ob	ete of compr 5, design pa nay not be ap tained from sp	essive strength greater rameters given in the	Uigh	M 55 M 60 M 65 M 70	55 60 65 70
		(2) For concr than M 5 standard n	ete of compr 5, design pa nay not be ap tained from sp	essive strength greater rameters given in the oplicable and the value	High	M 55 M 60 M 65 M 70 M 75	55 60 65 70 75
		(2) For concrution M 5 standard m may be ob	ete of compr 5, design pa nay not be ap tained from sp	essive strength greater rameters given in the oplicable and the value	High strength Concrete	M 55 M 60 M 65 M 70 M 75 M 80	55 60 65 70 75 80
		(2) For concrution M 5 standard m may be ob	ete of compr 5, design pa nay not be ap tained from sp	essive strength greater rameters given in the oplicable and the value	strength	M 55 M 60 M 65 M 70 M 75 M 80 M 85	55 60 65 70 75 80 85
		(2) For concrution M 5 standard m may be ob	ete of compr 5, design pa nay not be ap tained from sp	essive strength greater rameters given in the oplicable and the value	strength	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90	55 60 65 70 75 80 85 90
		(2) For concrution M 5 standard m may be ob	ete of compr 5, design pa nay not be ap tained from sp	essive strength greater rameters given in the oplicable and the value	strength Concrete	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100	55 60 65 70 75 80 85 90 100
		(2) For concrution M 5 standard m may be ob	ete of compr 5, design pa nay not be ap tained from sp	essive strength greater rameters given in the oplicable and the value	strength Concrete In this a	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment,	55 60 65 70 75 80 85 90 100 Classification
		(2) For concrution M 5 standard m may be ob	ete of compr 5, design pa nay not be ap tained from sp	essive strength greater rameters given in the oplicable and the value	strength Concrete In this a Concrete ha been shifted	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard	55 60 65 70 75 80 85 90 100 Classification nged. M60Gr. h concrete and fro
		(2) For concrution M 5 standard m may be ob	ete of compr 5, design pa nay not be ap tained from sp	essive strength greater rameters given in the oplicable and the value	In this a Concrete ha been shifted Grades M83	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard 5 to M100	55 60 65 70 75 80 85 90 100 Classification nged. M60Gr. h concrete and fro are added to Hig
		(2) For concrution M 5 standard m may be ob	ete of compr 5, design pa nay not be ap tained from sp	essive strength greater rameters given in the oplicable and the value	In this a Concrete ha been shifted Grades M83	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard 5 to M100 ncretes. In	55 60 65 70 75 80 85 90 100 Classification nged. M60Gr. h concrete and fro are added to Hig
7.	8.1	 (2) For concr than M 5 standard n may be ob experiment A durable 	ete of compr 5, design pa nay not be ap tained from sp al results.	essive strength greater rameters given in the oplicable and the value becialized literature and one that performs	In this a Concrete ha been shifted Grades M8 strength co replaced witt A durable	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard 5 to M100 a ncretes. In h M60. concrete is	5560657075808590100Classificationnged. M60Gr. hconcrete and froare added to Hignote to M55one that perform
7.	8.1 General	 (2) For concr than M 5 standard n may be ob experiment A durable satisfactorily in 	ete of compr 5, design pa nay not be ap tained from sp al results.	essive strength greater rameters given in the oplicable and the value becialized literature and one that performs environment during its	In this a Concrete ha been shifted Grades M8: strength co replaced witt A durable satisfactorily	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard 5 to M100 5 to M100 concrete is in the working	55 60 65 70 75 80 85 90 100 Classification nged. M60Gr. h concrete and fro are added to Hig note to M55 one that perform genvironment durin
7.		 (2) For concr than M 5 standard n may be ob experiment A durable satisfactorily in anticipated exp 	ete of compr 5, design pa nay not be ap tained from sp al results.	essive strength greater rameters given in the oplicable and the value becialized literature and one that performs environment during its ons during service. The	In this a Concrete ha been shifted Grades M8 strength co replaced wit A durable satisfactorily its anticipat	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard 5 to M100 5 to M100 concrete is in the working ed exposure	55 60 65 70 75 80 85 90 100 Classification nged. M60Gr. h concrete and fro are added to Hig note to M55 one that perform genvironment durin conditions durin
7.		 (2) For concruthan M 5 standard n may be ob experimenta A durable satisfactorily in anticipated experiated and anticipated experiates and anticipated experiate experiates and anticipated experiates anticipate experiates anticipates antites anticipates anticipates anticipates anticipates anticipat	ete of compr 5, design pa nay not be ap tained from sp al results.	essive strength greater rameters given in the oplicable and the value becialized literature and one that performs environment during its	In this a Concrete ha been shifted Grades M8 strength co replaced wit A durable satisfactorily its anticipat service life.	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard 5 to M100 5 to M100 concretes. In h M60. concrete is in the working ed exposure The materials	55 60 65 70 75 80 85 90 100 Classification nged. M60Gr. h concrete and fro are added to Hig note to M55 one that perform g environment durin conditions durin and mix proportio
7.		 (2) For concruthan M 5 standard n may be ob experimental statisfactorily in anticipated experimental should be such applicable, to the such applicable, the such applicable is the such applicable. 	ete of compr 5, design pa nay not be ap tained from sp al results.	one that performs environment during its ons during service. The	In this a Concrete has been shifted Grades M8 strength co replaced wit A durable satisfactorily its anticipat service life. ' specified and its integrity	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard 5 to M100 5 to M100 concrete is in the working ed exposure The materials used should b and, if ap	55 60 65 70 75 80 85 90 100 Classification nged. M60Gr. h concrete and fro are added to Hig note to M55 one that perform genvironment durin conditions durin and mix proportio be such as to mainta plicable, to protein
	General	 (2) For concruthan M 5 standard n may be ob experimental experimental statisfactorily in anticipated experiates and should be such applicable, to corrosion. 	ete of compr 5, design pa nay not be ap tained from sp al results.	one that performs environment during its ons during service. The ons specified and used ain its integrity and, if	In this a Concrete has been shifted Grades M8 strength co replaced with A durable satisfactorily its anticipat service life. ' specified and its integrity embedded m	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard 5 to M100 sin cretes. In h M60. concrete is in the working ed exposure The materials used should b and, if ap etal from corre	55 60 65 70 75 80 85 90 100 Classification nged. M60Gr. h concrete and fro are added to Hig note to M55 one that perform genvironment durin conditions durin and mix proportion be such as to maintata plicable, to proteopsion.
7.		 (2) For concruthan M 5 standard n may be ob experimental experimental statisfactorily in anticipated experiates and should be such applicable, to corrosion. Cement control 	ete of compr 5, design pa nay not be ap tained from sp al results. concrete is n the working posure condition mix proportion h as to mainta protect er ent prescribe	one that performs environment during its ons during service. The ons specified and used ain its integrity and, if mbedded metal from	In this a Concrete ha been shifted Grades M8 strength co replaced wit A durable satisfactorily its anticipat service life. specified and its integrity embedded m	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard 5 to M100 ancretes. In h M60. concrete is in the working ed exposure The materials used should b and, if ap etal from corrot	55 60 65 70 75 80 85 90 100 Classification nged. M60Gr. h concrete and fro are added to Hig note to M55 one that perform genvironment durin conditions durin and mix proportion be such as to mainta plicable, to proteories posion.
	General NOTES to Table 5 Minimum	 (2) For concruthan M 5 standard n may be ob experimental experimental statisfactorily in anticipated experimental should be such applicable, to corrosion. Cement contriurespective of inclusive of 	ete of compr 5, design pa nay not be ap tained from sp al results. concrete is n the working posure conditi- mix proportion h as to maint: poprect er ent prescribes f the grades additions me	one that performs environment during its ons during service. The ons specified and used ain its integrity and, if mbedded metal from entioned in 5.2. The	strength Concrete In this a Concrete ha been shifted Grades M8: strength co replaced wit A durable satisfactorily its anticipat service life.' specified and its integrity embedded m Cement cor irrespective and is inc	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard 5 to M100 mendment, as been cha to Standard 5 to M100 mendment, ancretes. In h M60. concrete is in the working ed exposure the materials used should b and, if ap etal from corror tent prescrib of grades ar lusive of n	55 60 65 70 75 80 85 90 100 Classification nged. M60Gr. h concrete and fro are added to Hig note to M55 one that perform genvironment durin conditions durin and mix proportion be such as to maintata plicable, to protestion. bed in this table nd types of ceme nineral admixtur
	General NOTES to Table 5	 (2) For concruthan M 5 standard n may be ob experimental experimental statisfactorily in anticipated experimental should be such applicable, to corrosion. Cement contairrespective of additions such 	ete of compr 5, design pa nay not be ap tained from sp al results. concrete is n the working posure conditi- mix proportic h as to maint: protect er ent prescribe f the grades additions me as fly ash or	one that performs environment during its ons during service. The ons specified and used ain its integrity and, if nbedded metal from ed in this table is of cement and it is	strength Concrete In this a Concrete ha been shifted Grades M8: strength co replaced wit A durable satisfactorily its anticipat service life.' specified and its integrity embedded m Cement cor irrespective and is inc mentioned is	M 55 M 60 M 65 M 70 M 75 M 80 M 85 M 90 M 100 mendment, as been cha to Standard 5 to M100 mendment, as been cha to Standard 5 to M100 mendment, ancretes. In h M60. concrete is in the working ed exposure The materials used should b and, if ap etal from corror tent prescrib of grades ar lusive of n n 5.2. The f	55 60 65 70 75 80 85 90 100 Classification nged. M60Gr. h concrete and fro are added to Hig note to M55 one that perform genvironment durin conditions durin and mix proportion be such as to maintata plicable, to proteopsion.

9.	Water-Cement Ratio and Minimum Grade of Concrete for Different Exposures with Normal Weight Aggregates of 20 mm Nominal Maximum Size NOTES to Table 5 – Note 3 added	content and water-cement ratio if the suitability is established and as long as the maximum amounts taken into account do not exceed the limit of pozzolona and slag	 the concrete composition with respect to the cement content and water-cement ratio not exceeding the limit of fly ash and slag specified in IS 1489(Part I) and IS 455 respectively, beyond which these additions though permitted, shall not be considered for these purposes. 3. The minimum cement content, maximum free water-cement ratio and minimum grade of concrete are individually related to exposure.
10	8.2.5.4 Alkali- aggregate reaction	 b) Use of low alkali ordinary Portland cement having total alkali content not more than 0.6 percent (as Na₂O equivalent). Further advantage can be obtained by use of fly ash (Grade 1) conforming to IS 3812 or granulated blast furnace slag conforming to IS 12089 as part replacement of ordinary Portland cement (having total alkali content as Na₂O equivalent not more than 0.6 percent), provided fly ash content is at least 20 percent or slag content is at least 50 percent. 	 b) Use of low alkali ordinary Portland cement having total alkali content not more than 0.6 percent (as Na₂O equivalent). Further advantage can be obtained by use of flyash conforming to IS 3812 (Part I) or ground granulated blast furnace slag conforming to IS 12089 as part replacement of ordinary Portland cement (having total alkali content as Na₂O equivalent not more than 0.6 percent), provided fly ash content is at least 25percent or slag content is at least 50 percent.
11	8.2.6.2 Drainage	At sites where alkali concentrations are high or may become very high, the ground water should be lowered by drainage so that it will not come into direct contact with the concrete. Additional protection may be obtained by the use of chemically resistant stone facing or a layer of plaster of Paris covered with suitable fabric, such as jute thoroughly impregnated with bituminous material.	At sites where alkali concentrations are high or may become very high, the ground water should be lowered by drainage so that it will not come into direct contact with the concrete. Additional protection may be obtained by the use of suitable impermeable barriers.
12	9.2 Design Mix Concrete 9.2.1	As the guarantor of quality of concrete used in the construction, the constructor shall carry out the mix design and the mix so designed (not the method of design) shall be approved by the employer within the limitations of parameters and other stipulations laid down by this standard.	As the guarantor of quality of concrete used in the construction, the constructor shall carry out the mix design and the mix so designed (not the method of design) shall be approved by the employer within the limitations of parameters and other stipulations laid down by this standard. If so desired, the employer shall be provided with supporting data including graphs showing strength versus water cement ratio for range of proportions, complete trial mix proportioning details to substantiate the choice of cement content, fine and coarse aggregate content, water, mineral admixtures, chemical admixtures etc.,
13	9.2.2	The mix shall be designed to produce the grade of concrete having the required workability and a characteristic strength not less than appropriate values given in Table 2. The target mean strength of concrete mix should be equal to the characteristic strength plus 1.65 times the standard deviation.	The mix shall be designed to produce the grade of concrete having the required workability and a characteristic strength not less than appropriate values given in Table 2. Proportion/grading of aggregates shall be made by trial in such a way as to make densest possible concrete. The target mean strength of concrete mix should be equal to the characteristic strength plus 1.65 times the standard deviation.


14	Table 8	Grade of Concrete Assumed Standard Deviation N/mm ²	Grade of Assumed Standard
	Assumed Standard		Concrete Deviation N/mm ²
	Deviation	M10 3.5 M15	M10 ך 3.5
		M20 1 4.0	M15 }
		M25 5 M30 > 5.0	M20 4.0 M25 4.0 UPPCL JE 21.02-2022(Shift-I)
		M35	M30
		M40 >	M35 M40
		M45	M45 5.0
		M50 J	M50
		NOTEC	M55 M60
		NOTES -	NOTES
		The above values correspond to the site control having proper storage of cement; weight batching	NOTES - 1. The above values correspond to the site
		of al materials; controlled addition of water;	control having proper storage of cement;
		regular checking of all materials, aggregate gradings and moisture content; and periodical	weight batching of al materials;
		cheacking of workability and strength. Where there	controlled addition of water; regular checking of All materials, aggregate
		is deviation from the above the values given in the	gradings and moisture content; and
		above table shall be increased by IN/mm ² .	periodical cheacking of workability and
			strength. Where there is deviation from the above the values given in the above
			table shall be increased by 1N/mm ²
			2. for grade above M60, the standard deviation shall be established by actual
			trials based on assumed proportion,
			before finalizing the mix.
			3. In this amendment, M55 and M60 has been added in the amended version to the
			Grade of Concrete. Also note 2 is added
15	10.2 D. ()	To avoid confusion and error in batching,	To avoid confusion and error in batching,
	Batching	consideration should be given to using the smallest practical number of different concrete mixes on any	consideration should be given to using the smallest practical number of different
		site or in any one plant. In batching concrete, the	concrete mixes on any site or in any one
		quantity of both cement and aggregate shall be determined by mass; admixture, if solid, by mass;	plant. In batching concrete, the quantity of both cement and aggregate shall be
		liquid admixture may however be measured in	determined by mass; admixture, if solid, by
		volume or mass; water shall be weighed or measured by volume in a calibrated tank (see also IS	mass; liquid admixture may however be measured in volume or mass; water shall be
		4925). Ready-mixed concrete supplied by ready-	weighed or measured by volume in a
		mixed concrete plant shall be preferred. For large and medium project sites the concrete shall be	calibrated tank (see also IS 4925). For large and medium project sites, the
		sourced from ready mixed concrete plants or from	concrete shall be sourced from Ready mixed
		on site or off site batching and mixing plants (see IS	concrete plants or from captive on site or off
		4926).	site automatic batching and mixing plants. The concrete produced and supplied by
			ready-mixed concrete plants shall be in
			accordance with IS 4926. In case of concrete from captive on site or off site
			automatic batching and mixing plants,
16	10.2.1	Event where it can be shown to the esticitation of	similar quality control shall be followed.
10	10.2.1	Except where it can be shown to the satisfaction of the engineer-in-charge that supply of properly	The grading of aggregate shall be controlled by obtaining the coarse aggregate in
		graded aggregate of uniform quality can be	different sizes and blending them in right
		maintained over a period of work, the grading of aggregate should be controlled by obtaining the	proportions, the different sizes being stocked in separate stock piles. The material
		coarse aggregate in different sizes and blending	should be stock-piled for several hours
		them in the right proportions when required, the different sizes being stocked in separate stock-piles.	preferably a day before use. The grading of coarse and fine aggregate should be checked
		The material should be stock-piled for several hours	as frequently as possible, the frequency for a
		preferably a day before use. The grading of coarse	given job being determined by the engineer-
		and fine aggregate should be checked as frequently as possible, the frequency for a given job being	in charge to ensure that the specified grading is maintained.
		determined by the engineer-in charge to ensure that	
		the specified grading is maintained.	<u> </u>

17	10.2.2	The accuracy of the measuring equipment shall be within + 2 percent of the quantity of cement being measured and within + 3 percent of the quantity of aggregate, admixtures and water being measured.	 The accuracy of measuring equipment shall be within ±2 percent of the quantity of cement and mineral admixtures being measured and within ±3percent of the quantity of aggregate, chemical admixtures and water being measured. In a batching plant, the concrete production equipment shall be calibrated initially at the time of installation or reconditioning of the equipment and subsequently at the following intervals: a) Mechanical/knife edge systems : At least once every two months b) Electrical / load cell systems : At least once every three months
18	10.2.3	Proportion/Type and grading of aggregates shall be made by trial in such a way so as to obtain densest possible concrete. All ingredients of the concrete should be used by mass only.	All ingredients of concrete shall be used by mass except water and chemical admixtures which may be by volume.
19	10.2.5	It is important to maintain the water-cement ratio constant at its correct value. To this end, determination of moisture contents in both fine and coarse aggregates shall be made as frequently as possible, the frequency for a given job being determined by the engineer-in-charge according to weather conditions. The amount-of the added water shall be adjusted to compensate for any observed variations in the moisture contents. For the determination of moisture content in the aggregates, IS 2386 (Part 3) may be referred to. To allow for the variation in mass of aggregate due to variation in their moisture content, suitable adjustments in the masses of aggregates shall also be made. In the absence of -exact data, only in the case of nominal mixes, the amount of surface water may be estimated from the values given in Table 10.	It is important to maintain the water-cement ratio constant at its correct value. To this end, determination of moisture contents in both fine and coarse aggregates shall be made as frequently as possible, the frequency for a given job being determined by the engineer-in-charge according to weather conditions. The amount-of the added water shall be adjusted to compensate for any observed variations in the moisture contents. For the determination of moisture content in the aggregates, IS 2386 (Part 3) may be referred to. Where batching plants are used, it is recommended to determine moisture content by moisture probes fitted to the batching plants. To allow for the variation in mass of aggregate due to variation in their moisture content, suitable adjustments in the masses of aggregates shall also be made. In the absence of -exact data, only in the case of nominal mixes, the amount of surface water may be estimated from the values given in Table 10.
20	10.3 Mixing	Concrete shall be mixed in a mechanical mixer. The mixer should comply with IS 1791 and IS 12119. The mixers shall be fitted with water measuring (metering) devices. The mixing shall be continued until there is a uniform distribution of the materials and the mass is uniform in colour and consistency. If there is segregation after unloading from the mixer, the concrete should be remixed.	Concrete shall be mixed in mechanical mixer (see also IS 1791 and IS 12119). It shall be ensured that stationary or central mixers and truck mixers shall comply with the performance criteria of mixing efficiency as per IS 4634. Mixing efficiency test shall be performed at least once in a year. The mixers shall be fitted with water measuring (metering) devices. The mixing shall be continued until there is a uniform distribution of the materials and the mass is uniform in colour and consistency. If there is segregation after unloading from the mixer, the concrete should be remixed.
21	10.3.1	For guidance, the mixing time shall be at least 2 min. For other types of more efficient mixers, manufacturers' recommendations shall be followed; for hydrophobic cement it may be decided by the engineer-in-charge.	As a guidance, the mixing time shall be at least 2min for conventional free fall (drum) batch type concrete mixers. For other types of more efficient mixers, manufacturers' recommendations shall be followed.

22	10.3.3	Dosages of retarders, plasticisers superplasticisers shall be restricted to 0.5, 2.0 percent respectively by weight of ceme materials and unless a higher value is agree between the manufacturer and the construct on performance test.	1.0 and ntations' eed upon tor based superplasticisers shall be restricted to 0.5, 1.0 and 2.0 percent respectively by mass of cementitious materials; however, the dosages of polycarboxylate based admixtures shall not exceed 1.0percent. A higher value of above admixtures may be used, if agreed upon between the manufacturer and the constructor based on performance test relating to workability, setting time and early age strength.
23	11.1 General	The formwork shall be designed and constrates to remain sufficiently rigid during place as to remain sufficiently rigid during place compaction of concrete, and shall be supprevent loss of slurry from the concrete. For details regarding design, detailing, etc, remay be made to IS 14687. The tolerance shapes, lines and dimensions shown in the shall be within the limits given below: a) Deviations from specified dimensions of columns and beams b) Deviation from dimensions of footings 1) Dimensions if plan 2)Eccentricity 0.01 times the with the footing i direction of de but not more 50mm 3) Thickness ± 0.05	cing and ch as to or further referencespecified (dimensions)mm $dimensionsofcross-sectionofcross-sectionofofcross-sectiondrawing(b)Deviationfromdimensionsfromdimensionsfromoffootings(b)Deviationfootings1)Dimensions inthethe widthofthedirectionofdeviation(dths ofnthan1)Dimensionsfootings+50 to -10mmdimensions(dths ofnthan3)Thickness+50 to -10morethan(dths ofs1)3)Thickness+50 to -10morethan$
			In this amendment, The tolerances on shapes, lines and dimensions are revised.
24	13.4 Construction Joints and Cold Joints	Joints are a common source of weakny therefore, it is desirable to avoid them. If the possible, their number shall be mit Concreting shall be carried out continuous construction joints, the position and arrange which shall be indicated by the Construction joints should comply with IS 1	 and, therefore, it is desirable to avoid them. and, therefore, it is desirable to avoid them. If this is not possible, their number shall be minimized. Concreting shall be carried out continuously up to construction joints, the position and arrangement of which shall be
25	Table 11	Characteristic Compressive Stree Compliance Requirement (Clases 16.1 and 16.3)	Strength Compliance Requirement (Clases 16.1 and 16.3)
		Specified Grade (1)Mean of the group of 4 Non- overlapping consecutive test result in N/mm² (2)Individu result in (3	N/mm ² Grade (1) group of 4 test result in Non- N/mm ²

		$\begin{array}{ c c c c c } M15 & \geq f_{ck} + 0.825 \times \geq f_{ck} - 3 \ \text{N/mm}^2 \\ & \text{established} \\ & \text{standard} \\ & \text{deviation} \\ & (\text{rounded off to} \\ & \text{nearest} & 0.5 \\ & \text{N/mm}^2) \\ & \text{or} \\ & f_{ck} + 3 \ \text{N/mm}^2, \\ & \text{whichever} \text{is} \\ & \text{greater} \\ \hline M20 & \geq f_{ck} + 0.825 \times \geq f_{ck} - 4 \ \text{N/mm}^2 \\ & \text{or} \\ & \text{established} \\ & \text{above} \\ & \text{standard} \\ & \text{deviation} \\ & (\text{rounded off to} \\ & \text{nearest} \\ & 0.5 \\ & \text{N/mm}^2) \\ & \text{or} \\ & f_{ck} + 4 \ \text{N/mm}^2, \\ & \text{whichever} \\ & \text{is} \\ & \text{greater} \\ \hline \hline \end{array}$ NOTE- In the absence of established value of standard deviation the values given in Table 8 may be assumed, and attempt should be made to obtain results of 30 samples as early as possible to establish the value of standard deviation.	$M15 ≥ f_{ck} + 0.825 × ≥ f_{ck} - 3$ established N/mm ² standard deviation (rounded off to nearest 0.5 N/mm ²) or $f_{ck} + 3$ N/mm ² , whichever is greater $M20 ≥ f_{ck} + 0.825 × ≥ f_{ck} - 4$ or established above standard deviation (rounded off to nearest 0.5 N/mm ²) or $f_{ck} + 4$ N/mm ² , whichever is greater Note -:(1). In the absence of established value of standard deviation, the value given in Table 8 may be assumed, and attempt should be made to abstain results of 30 samples as early as possible to establish the value of standard deviation. (2). For concrete of quantity up to 30 m ³ (where the member of samples to be taken is less than four as per the frequency of sampling given in 15.2.2) the mean of test results of all such samples shall be $f_{ck} + 4$ N/mm ²
26	24.4.1 Restrained Slab with Unequal Conditions at Adjacent Panels	In some cases the support moments calculated from Table 26 for adjacent panels may differ significantly. The following procedure may be adopted to adjust them. a) Calculate the sum of moments at midspan and supports (neglecting signs).	minimum. In some cases the support moments calculated from Table 26 for adjacent panels may differ significantly. The following procedure may be adopted to adjust them. a) Calculate the sum of the midspan moments and the average of the support moments (neglecting signs) for each panel.
27	26.2.1 Development Length of Bars - NOTES – <i>Note 3 added</i>	Only 2 Note items mentioned.	 3) For plain cement concrete of M15grade with nominal reinforcement, the design bond stress may be taken as 1.0 N/mm².
28	26.2.1.1 Design bond stress in limit state method for plain bars in tension shall be as below:	For deformed bars conforming to IS 1786 these values shall be increased by 60 percent. For bars in compression, the values of bond stress for bars in tension shall be increased-by 25 percent.	For deformed bars conforming to IS 1786 these values shall be increased by 60 percent. For bars in compression, the values of bond stress for bars in tension shall be increased-by 25 percent. For fusion bonded epoxy coated deformed bars, design bond stress values shall be taken as 80 percent of the values given in the above table.

29	35.3.2 Cracking – 3rd para 40.5.2 Shear Reinforcemen t for Sections Close to supports	general, exc is not harm effects upon upon the c where crack because th weather or contact soi mm is sugg For particu 'severe' ca width of c mm.	rface width of the cracks should not, in exceed 0.3 mm in members where cracking armful and does not have any serious adverse upon the preservation of reinforcing steel nor the durability of the structures. In members racking in the tensile zone is harmful either they are exposed to the effects of the or continuously exposed to moisture or in soil or ground water, an upper limit of 0.2 suggested for the maximum width of cracks. ticularly aggressive environment, such as the category in Table 3, the assessed surface f cracks should not in general, exceed 0.1 reinforcement is required, the total area of iven by: $p(v-2d c/av)/0.87 fy \ge 0.4 avb/0.87 fy$				al, excee acking is serious ion of re iility of the racking either beck ts of the to moistur vater, an a l for the m icularly 'very s given is width of exceed 0.1 reinforcem is is given	d 0.3 m not harm adverse of inforcing he structu in the cause they weather ure or in upper lim naximum aggressiv severe' in Table cracks <u>l mm.</u> nent is re h by:	acks should not, im in members ful and does not effects upon the steel nor upon res. In members tensile zone is are exposed to or continuously contact soil or nit of 0.2 mm is width of cracks. re environment, and 'extreme' 3, the assessed should not in equired, the total v)/0.87fy ≥ 0.4
31	B-2.1.1 Direct Tension		ensile stress			For M50	and abov	e, Tensile	stress – 5.2
32	Table 21	Perm Grade of concrete 1 M 10 M 15 M 20 M 25 M 30 M 35 M 30 M 35 M 40 M 45 M 50 Note- (1). The concret	ensile stress – 5.6issible stresses in concretePermissible stress in compression (N/mm²)Permissible tress In (Average) for plain Bars in TensionBending σ_{cbc} Direct σ_{cb} τ_{bd} τ_{bd} 2343.02.55.04.00.67.05.00.88.56.00.910.08.01.011.59.01.113.010.01.214.511.01.316.012.01.4			Grade of concrete 1 M 10 M 15 M 20 M 25 M 30 M 40 M 45 M 50 M 55 M 60 In this atable is	Perm stre computer (N/m) Bending σcbc 2 3.0 5.0 7.0 8.5 10.0 11.5 13.0 14.5 16.0 18.0 20.0	issible ss in ression nm²) Direct σ_{cb} 3 2.5 4.0 5.0 6.0 8.0 9.0 10.0 11.0 12.0 13.5 15.0 ent, The	n concrete Permissible tress In (Average) for plain Bars in Tension τ_{bd} 4 0.6 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 change to the
33	ANNEX E (Clause 25.2) EFFECTIVE LENGTH OF COLUMNS	 (2). The bond stress given in col 4 Shall be increased by 25 percent for bars in compression. E-1 : In the absence of more exact analysis, the effective length of columns in framed structures may be obtained from the ratio of effective length to unsupported length lef/l given in Fig. 26 when relative displacement of the ends of the column is prevented and in Fig. 26 when relative lateral displacement of the -ends is not prevented. In the latter case, it is recommended that the effective length ratio I_{ef} /l may not be taken to be less than 1.2. 				(b) Insert E-l : In ti the effect structures effective given in of the en in Fig. 27 of the -e case, it i	ion of a n he absence tive length s may be length to Fig. 26 w ds of the ' when rel nds is no s recomm	ew row for ce of mor th of col obtained o unsupport then relative lative late of prevent nended th	gainst M55 or M60 e exact analysis, umns in framed from the ratio of orted length l_{ef}/l ive displacement is prevented and ral displacement red. In the latter nat the effective e taken to be less

01.

BUILDING ROCK & STONE

Introduction-

4. Luster-

GES 2019

- Petrology deals with the study of origin and characteristics of rock.
- > Rate of increase of temperature below the earth surface is 15°-30° C/km or 1°C for every 32 meter.
- > The molten mass present at deep depth from the earth surface is known as magma. It is the part of upper mantle. When magma comes above the earth surface then it is known as **lava**.
- > The major composition of magma is Feldspar, Quartz, mica.

O Rock Forming Minerals-

UPMRC AM 2023, SSC JE 2018, UPMRC JE 2015

Calcite, Dolomite, Feldspar, Quartz, Mica, Gypsum, Amphibole, olivine.

Gypsum and **Dolomite** are rock and minerals both.

Properties of Mineral-

1. Cleavage-

It is the measure of the capability of minerals to split along certain planes parallel to the crystal faces.

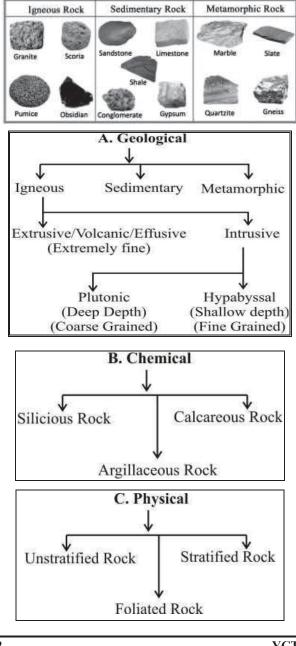
> Types of cleavage seen in minerals are basal, prismatic, cubic, octahedral.

2. Hardness-

Hardness is the resistance of a smooth surface against abrasion or scratching. It is measure on Moh's scale.

Minerals	Hardness on Moh's scale	Description
Talc	1	Scratched by the finger
Gypsum	2	nail
Calcite	3	Scratched by knife
Fluorite	4	
Apatite	5	
Feldspar/ Orthoclase	6	Scarcely scratched by knife
Quartz	7	KIIIIC
Topaz	8	Not scratched by
Corundum/	9	knife
Sapphire		
Diamond	10	

3. Streak-


It is the color of mineral in the powder form.

Civil Engineering Smart Scan

It is the shining of the surface of mineral under reflection of light. It is classified as glassy, greasy, pearly, dull, resinous, silky and metallic.

Texture- It indicate the coarseness/arrangement of 5. the grains of mineral.

□ CLASSIFICATION OF ROCKS-

32

UPPSC AE 2020

YCT

Geological Classification-

CHB JE 2023, UPRVUNL JE 2022, MHWRD JE 2022, UPPCL JE 2022, SSC JE 2022, NWDA JE 2021

O Igneous/Primary/Unstratified/Eruptive rock-

SSC JE 2022, DSSSB JE 2019

These rocks are formed by the cooling of molten magma forced up through crack in the earth crust. These rocks have crystalline structure and hard, durable, massive and stronger than other rocks.

Ex. Basalt, Trap, Syenite, Diorite etc.

Igneous rocks are following two types-

1. Extrusive/Volcanic/Effusive Rock-

These rocks are formed when the molten magma is cooling and freezing above or at the earth's surface. These rocks have extremely fine grained crystalline structure.

Ex. Basalt, Trap, Andesite, Dolomite, Dacite, Rhyolite, Pumice, Tuff, Scoria etc.

2. Intrusive Rock-

GPSC AE 2018

Due to cooling of magma at a deep/considerable depth from earth's surface.

- These are following two types-
- (i) Plutonic Rock-

UPRVUNL JE 2022, DSSSB JE (Tier-I) 2022 Mizoram PSC 2021, UPMRC JE 2018

These rocks are formed when the molten magma freezing at the deep depth from the earth surface. These rocks have coarse grained crystalline structure.

Ex. Granite, Syenite, Gabbro, Pegmatite, Diorite.

(ii) Hypabyssal Rock-

GPSC AE 2021, DSSSB JE 2019

These rocks are formed when molten magma is solidifies at the shallow depth from the earth surface.

These rocks have fine grained crystalline structure. Ex. Dolerite, Diorite

O Sedimentary/Aqueous/Stratified Rock-

MHWRD JE 2022, SSC JE 2022 UKPSC AE 2022, GPSC AE 2021, NWDA JE 2021 BSPHCL JE 2019, DDA JE 2018, SSC JE 2018

These rock are formed by the accumulation or regular deposition of mineral or organic particles at earth surface followed by cementation these rocks have granular structure.

Ex. Sand stone, Lime stone, Gypsum, Laterite, shale, Kankar etc.

O Metamorphic Rock-

ESE 2022, MHWRD JE 2022, MHADA JE 2022 JSSC JE 2022 DSSSB JE (Tier-I) 2022, RSMSSB JE 2021

Due to high pressure and temperature igneous and sedimentary rocks have changed their physical

Civil Engineering Smart Scan

properties and new types of rock formed. These new types of rock are called metamorphic rock. The resultant mass may have a foliated structure.

Parent Rock	Metamorphic form
Granite, Syenite	Gneiss
Dolerite, Basalt, Laterite	Schist
Dolomite, Lime stone, Marl UKPSC JE 2022 PAPER-II	Marble
Mudstone, Shale	Slate
Sand stone	Quartzite
Gabbro	Serpentine
Bituminous coal	Graphite
Lignite coal	Anthracite

i). The texture of igneous rock is depends upon the rate of cooling of magma.

ii). Texture of igneous rock and sedimentary rock is crystalline and granular respectively.

Chemical Classification-

	DDA JE 2023, UPPCL JE 2022 (Tier-I) 2022, PSTCL AE 2021			
Types of rock	Example			
Siliceous Rock- Major constituent is silica (SiO_2) . It is very hard and durable.				
Calcareous Rock- Major constituent is lime.	Gypsum, Lime stone, Dolomite, Marble etc.			
Argillaceous Rock - Major constituent is clay (Al ₂ O ₃). It is hard and brittle in nature.	Shale, Slate, Laterite, Kaolin etc.			

Physical/Petrological Classification-

1. Stratified Rock-

JSSC JE 2022, RSMSSB JE 2022, NWDA JE 2021 SSC JE 2020, DSSSB JE 2019

These rocks show distinct layers along which the rocks can be split.

Ex. All sedimentary rock like sand stone, lime stone marble, shale, slate etc.

2. Un-stratified Rock-

Do not show any stratification and can't be easily split into thin layers.

Ex. All igneous rocks like granite, syenite, basalt, trap etc.

3. Foliated Rock-

MHWRD JE 2022, NHPC JE 2022, DSSSB JE 2019 These rock can be split up only in a definite direction. Most of the metamorphic rocks have foliated structure, except quartzite, serpentine and marble.

On the basis	of mine	rals available-		Basalt		Marine wo	ork, Ru	ubble masor	ıry.
Types of	rock	Example	1	Kankar		Manufactu	ire of l	Hydraulic li	me.
Monomineralic These rocks an	re formed			Gneiss (metamorp)				masonry w nd road meta	
by only one types of mineral. Polymineralic Rock- These rocks are formed by two or more than two Trap, Basalt, Shale, Slate			Sand stone		paving, ti natural st work an engineerin	le stor tone t d gr	flag stone, ne for roo for orname it for he k.	fing, ental	
types of mineral	S.	etc.	0	Stiffness of					
	Key Poi	ints		Des	scriptiv	ve		Modulus of sticity (kg/c	
		pure gypsum loses its		Very Stiff	Rock		8×10	$0^5 - 16 \times 10^5$	
luster and its from to		gravity is increased the loss of water of		Stiff Rock			4×1	$0^{5} - 8 \times 10^{5}$	
crystallization-		2.3 ; 2.95		Medium St	tiff Ro	ck	2×1	$0^{5} - 4 \times 10^{5}$	
 24 – Hours wat be greater than– 		on of granite should not 1%		Less Stiff I	Rock		1×10	$0^{5} - 2 \times 10^{5}$	
0		by the blasting method		Yielding R	.ock		0.5×	$10^{5} - 1 \times 10^{5}$	5
		ast resistance of 2 m, the der required is- 500 g		High Yield	ling Ro	ock	0.25	$\times 10^{5} - 0.5 \times$	<10 ⁵
 structure, can be easily quarried in blocks contains high percentage of iorn-oxide and available in different colours- The number of minerals arranged in the Moh's scale of hardness is- The aggregates in an example of crystalline surface texture- Gabbro Specific gravity for most of the building stones lies between- 2.5 to 3.0 On the basis of Percentage of silication 				The place at which stone is obtained is known as quarrying. Quarry Sap- The moisture present in newly quarried st called quarry sap. Tools used in Quarrying of stone-				E 2022, SSC J btained from quarried sto	IE 2022 n rock
available in 1 Acidic Rock-	rock-			Name of Tools Use					
Silica is greater	than 70%-	80%.		Priming Needle To make space			space	for fuse	
-		lite, Andesite etc.		Jumper To make		hole hole			
Basic Rock-						ting deep hole			
Silica is less that		ita Dalarita eta					ning hole		
Use of Various	Types of s						ping of explosive 600mm, dia. = 16mm		
Stone		UKPSC AE 2021, SSC JE 2019 Use		Hammer		To penet hole	rate th	e wedge in	rock
Granite	Railway			Wedge		For split	the ro	ck slab	
	abutmer light ho	nt pier sea walls, and		Crow bar		To remo	ved the	e wedge	
	0	costly so not used in	*	Methods of					
	general				1			2021, KPSC A	
Marble	Orname	ental work, monuments,		Method Wedging	Costly	<mark>Suitability</mark> y, soft		Examp Sand	ole stone,
Lime Stone	-	cture of cement.			stratif	fied rock.			stone,
Slate	Flooring	g, Roofing for ordinary mp proofing.		Uasting	Those	e rock v	where	Laterite, N and Slate e	tc.
Quartzite		ng wall, rubble masonry		Heating	Those therm	al expansi			gneiss

Digging	To get stone at a small scale.	Serpentine, Gypsum, Aterite.		Dressing of Stone- The action which is do
Channeling	Obtaining stone in the form of block.	-		stone to obtain a deficalled dressing.
Blasting	To obtain stone at a large scale.	-	≻	Dressing of stone is quarrying and before

Blasting-

Boring→Cleaning→Charging→Tamping→Firing O Quantity of explosive (N)-

PGCIL DT 2023, UPPCL JE 2022

 $N = [L.L.R.(in m)]^2 \times 1.5$ (in gm)

=	$\frac{[\text{L.L.R.(in m)}]^2}{0.008} \text{kg}$	=	$\frac{[\text{L.L.R.(in cm)}]^2}{61} \text{ kg}$
			-

Where, L.L.R.=Length of line of least resistance

* Explosive material used in blasting-APSC JE 2018, SSC JE 2017, HPPSC AE 2016

AFSU	JE 2018, SSC JE 2017, HPPSC AE 2010
Name of Explosive	Chemical composition
Blasting Gelatin	Nitroglycerin (93%) + Gun- Cotton (7%) Use- In deep well, under- ground work, in wet Condition
Gun-Cotton (most powerful)	Cotton with the solution of (HNO ₃ + H ₂ SO ₄) Use- Where demolitions are required.
Dynamite	Nitroglycerine (75%) + Fine sand (25%) Use- Both under water and surface blasting
Blasting power /Gun powder	Potassium nitrate (75%) + Charcoal Powder (15%) + Sulphur (10%) Use- In quarrying large block
Rock-a-Rock	Potassium chlorate, 79% + Nitrobenzol, 21% Use-Best for under water and damp situation blasting.
Cordite	It is gelatinized combination of Nitroglycerine and Nitrocellulose Use- Under water
Lithofracteur	Nitroglycerine (33%) + Nitrate of baryta (16%) + Sulphur (26%) + Kieselguhr (22%) charcoal (3%) Use- In tunnels

O Detonator-

It is used to trigger an explosive device.

- Length = 25 mm
- Diameter = 6 mm

quarrying and before seasoning to achieve less weight for transportation.

□ TYPES OF STONES FINISHING-

Boasted finishing-(i)

JSSC JE 2022, PGCIL DT 2018, UPRVUNL JE 2016 It is the making non-continuous parallel marks on the surface of stone.

The action which is done on the rough surface of stone to obtain a definite and regular shape are

Dressing of stone is done immediately after

It is done by a tools called boaster.

(ii) Furrowed finishing-

It has beautiful appearance in which sides are sunk up to 20 mm width and the middle portion is projected by 15 mm.

(iii) Polished finish-

It is provided for marbles, granite which are mostly used for floor tiles.

(iv) Reticulated finish-

MPPGCL JE 2023

NBCC JE 2017

A margin of 20 mm wide is marked on the sides of surface and irregular sinking type finish is made in the middle area.

(v) Tooled finish-

It is a classic finish which consists parallel continuous marks.

(vi) Scrabbling finish-

The resultant rough surface finish achieved after removing irregular projections on the stone surface by the scrabbling hammer.

(vii) Vermiculated finish-

Sinking in this type of finish is more curved and like worm eaten appearance.

Seasoning of stone-

UPMRC JE 2020 The process under which quarry sap are remove from the stone are called seasoning.

Time required for perfect seasoning of stone is- \triangleright 6 to 12 month.

***** Type of stone crusher and its equipment-

Cr	usher type	Equipment
]	Primary	Jaw crusher, Impact and Gyratory crusher and Hammer mill Crusher.
S	Secondary	Roll crusher, Cone crusher, Hammer mill
Т	ertiary	Ball mill, Roll mill & Rod-mill

- Test of Stone-
- Specific Gravity Test-Aim- To find out the unit weight of stone.
- Specific gravity of stone are following two types (a) Apparent Specific Gravity (IS : 1124 1974)

_ Weight of stone/volume of stone

Unit weight of water at 4[°]C

(b) True Specific Gravity (IS : 1122 - 1974)

_ Weight of stone particle/volume of stone particle

Unit weight of water at 4⁰C

- True specific gravity > Apparent specific gravity
- In case of stone, apparent specific gravity is most frequently used which value is 2.4 to 2.8.
 Specific gravity of various types of stone-

DDA JE 2023, MP Vyapam Sub. Engg. 2022 RPSC ACF & FRO 2021, DSSSB JE 2019, SJVN JE 2018			
Name of Stone	Specific Gravity		
Sand Stone	2.65 - 2.95		
Marble	2.7 - 2.85		
Granite	2.65 - 2.79		
Basalt	2.6 - 3.0		
Slate	2.72 - 2.89		
Laterite	2.0 - 2.2		
Lime Stone	2.0 - 2.75		
Gneiss	2.5 - 2.7		
Quartz	2.65		

• Water Absorption Test (IS : 1124 - 1974) Aim - To find out pore (air voids) in stone mass.

$$w = \frac{W_2 - W_1}{W_1} \times 100$$

 W_1 = Weight of oven dry stone

- W_2 = Weight of stone after immersing in water for 24 hours.
- > w % of various types of stone ≯5% and for hydraulic structure ≯ 0.5%
- UPPCL JE 2018, GPSC AE Class-2 2021
 ➢ Stone is rejected if w % is > 10%.
- Water absorption of various types of stone (after 24 hours)-

NHPC JE 2022, TSPSC AEE 2018

Types of Stone	Water absorption (% not greater than
Sand stone, Shale, Lime stone	10
Trap	6
Quartzite	3
Granite, Gneiss, Slate	1

• Durability Test-

Durability is the ability of a material to resist changes in its properties.

- For determining durability of stone the crystallization (weathering resistance) test is prescribed by Bureau of Indian Standards.
- The durability (Soundness) test is performed to find out the capacity of stone to resist disintegration and decomposition.
- Acid test to check weather resistance.
- Brard's test for frost resistance.
- Crushing Strength Test [IS : 1121 (Part-I)] PGCIL DT 2023

Aim- To find out crushing strength of stone. **Apparatus-**Compression Testing Machine (CTM). **Size of Specimen-**

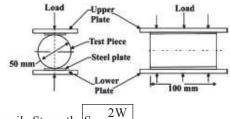
(i) Cube (50 mm side)

(ii) Cylinder (dia.- 50 mm, height- 50 mm) Rate of loading- 140 kg/cm²/min

SJVNL JE 2021

For good building stone compressive strength ≮100N/mm² or 1000 kg/cm²

PPSC JE 2022, NHPC JE 2022


```
RIICO Draughtsman 2021
```

Compressive Strength of Various Types of Stone-TNPSC AF 2019

	INPSC AE 2019				
Stone	Compressive Strength (in M.Pa)				
Trap	350 - 380				
Gneiss	200 - 370				
Basalt	150 - 180				
Slate	75 - 200				
Dolerite	90 - 150				
Syenite	90 - 150				
Granite	75 - 120				
Sandstone	64				
Lime stone	54				
	Key Points				
 Laterite The correct unit of measurement for an item of work 'Quarrying of stone or boulders' is- Cubic metre 					
Transverse S	trangth Test [IS · 1121 (Part_II)]_				
• Transverse Strength Test [IS : 1121 (Part-II)]- Aim-To find out the transverse strength of stone.					
Size of specimen - Beam ($200 \times 50 \times 50$ mm)					
Effective length of specimen - 150 mm					
Transverse strength $R = \frac{3WL}{2bd^3}$ N/mm ²					
Where,					
W = Central b	W = Central breaking load in N				
L = Length of span in mm					
	b = Average width of test piece in mm				
d = Average	d = Average depth in mm				

• Tensile Strength Test [IS : 1121 (Part III)]

- Cylinder [dia. = 50 mm, H = 100 mm]
- Diameter to height ratio = 1 : 2

Tensile Strength $S = \frac{2W}{\pi DL}$

Where,

- W = Applied load in N
- D = Diameter of specimen in mm
- L = Length of specimen in mm

Shear strength test [IS : 1121 (Part-IV)]-

This test is performed by Johnson shear tool or Dutton punching shear device.

■ Glance overview of stone test and purpose-

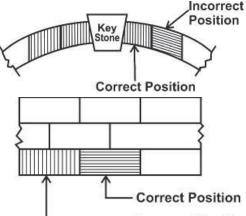
JSSC JE 2022, SJVNL JE 2021, GPSC JE 2020

Type of Test	Determine for	
Abrasion Test (By Dory Testing	Hardness and wearing resistance	
Machine)	resistance	
Attrition Test	Hardness, Toughness and	
(By Deval Testing Machine)	rate of wearing resistance	
Crushing Strength Test	Compressive strength	
(By C.T.M)		
(IS : 1121-1974)		
	Soluble minerals/ Muddy	
Smith's Test	matter.	
Sinti STOSI	• It is only qualitative	
	test.	
Crystallization Test	Durability	
(IS: 1126-1974)	JSSC JE 2022	
Hardness Test	Hardness	
(Mohs Scale)		
Impact Test	Toughness	
(By Page Impact Machine)		
Water Absorption Test	% Voids	
(IS 1124-1974)	(≯5% for good stone)	

***** Bearing capacity of various types of stone-

Stone	Max. Bearing Capacity (tone/m ²)
Lime Stone	400
Schist and Shale	300
Clay Shale	100
Compacted sand stone	45
Granite	30 - 35
Loose gravel	25

Important Point-


ISRO 2019, GES 2017

- > Hard Steel ball are used in Brinell hardness test.
- **Corundum** is a Amery type of stone.
- > Ammonia dynamite are used for tunneling in soft rock.
- > Shingle is a water bound pebbles.
- Chronological order of Hydraulic conductivity Vesicular basalt > Fractured metamorphic rock > Lime stone > Sand stone.
- Black marble is obtained from Jaipur.
- Hydrolysis is a type of chemical weathering under which granite is convert into clay.
- Stone used in various work-

	UPPSC AE 2013	
Hard stone	Used in Rubble masonry	
	• Cross cut saw is	
	used for cutting	
Heavy weight stone	Used in Dam, retaining wall and harbor	
Light weight stone	In Arch masonry	

- The load which is acting on the surface of stone, must be normal to the natural bed of stone.
- > Marble and slate have low electric conductivity.
- Compacted sand stone has good fire resistance.
- Natural bed of stone is radial in arch and perpendicular in wall masonry.

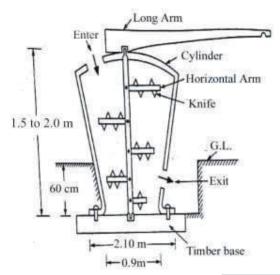
- Incorrect Position

- Colour of sedimentary rock is usually determined by Iron. Biotite (rock forming mineral) are also known as
- black mica.
- Iron slag is used for manufacturing of garlic stone.
 Barvta solution [Barium Hydroxide {Ba(OH)₃}]
- Baryta solution [Barium Hydroxide {Ba(OH)₂}] is used on stone surface as preservative material.
- Calcium hydroxide is used to protect stones from sulphate attack in Industries.
- Spalling hammer is used for rough dressing of stone.
 Broken bricks or stone abins are also called spall

>	Broken bricks of stone chips are also called spall.		
	Composition of sand stone	Quartz, Lime and Silica.	
	Composition of granite	Quartz, Feldspar, Mica.	

Civil Engineering Smart Scan

02.


BRICKS

KPSC JE 2022, UKPSC AE 2022 (Paper-II), CGPSC AE 2022 Excess and Brittle and weak on burning and disintegrate the corner of brick (Due to loss of cohesion) wart Increase shrinkage and warping of bricks during drying and burning. • Cracks developed on surface and corner deformed the ing Brick over burnt and looses its shape on • Provide dark blue or blackish colour ent • Decay of brick and give yellowish colour	
 Brittle and weak on burning and disintegrate the corner of brick (Due to loss of cohesion) Increase shrinkage and warping of bricks during drying and burning. Cracks developed on surface and corner deformed Brick over burnt and looses its shape on Provide dark blue or blackish colour 	
 during drying and burning. Cracks developed on surface and corner deformed Brick over burnt and looses its shape on Provide dark blue or blackish colour 	
 Brick over burnt and looses its shape Brovide dark blue or blackish colour 	
ent	
 ime and 4. Drying i. Natural drying ii. Artificial drying i. Natural drying ii. Artificial drying i. Natural drying ii. Artificial drying i. Pazawah or clamp ii. Intermittent kiln iii. Semi continuous kiln iv. Continuous kiln Unsoiling- The process of removing 20-30 cm thick the to layer of the earth which contain stone, kankar root and organic substance is termed as unsoiling. Digging- The process of excavation of soil mass after unsoiling is called digging. The digging operation should be done before rain season. Weathering-	
 O Unsoiling- The process of removing 20-30 cm thick the layer of the earth which contain stone, kankar and organic substance is termed as unsoiling. O Digging- The process of excavation of soil mass unsoiling is called digging. The digging operation of soil mass unsoiling is called digging. The digging operation of soil mass unsoiling is called digging. The digging operation of soil mass unsoiling is called digging. The digging operation of soil mass unsoiling is called digging. The digging operation of soil mass unsoiling is called digging. The digging operation the excavated soil is exposed weather for some periods due to whe could achieved a good plasticity. O Blending- MH WRD JE 2022, SJVNL 2021, SSC. The Process of mixing ingredient which present in sufficient quantity in brick earth and the process of mixing ingredient which present in sufficient quantity in brick earth and the process of mixing ingredient which present in sufficient quantity in brick earth and the process of mixing ingredient when the process of mixing ingredient when	

O Tempering-

Under this process required quantity of water is added in soil mass and the whole mass is kneaded as Pressed under the feet of men or cattle and obtain a homogeneous mass having uniform character.

- O Kneading or Pugging-PGCIL DT 2023, ISRO 2018, SSC JE 2017 Pugmill is used to preparation of brick earth it is called pugging or kneading.
- For manufacturing good brick tempering is done in pugmill. This operation is called pugging.
- The process of mixing water, clay and other ingredients to make bricks is called kneading.

O Moulding-

JKSSB JE 2022

The process of giving a required shape and size to brick earth in the form of brick is called moulding. It is two types-

(i) Hand moulding (ii) Machine moulding

Steel mould	Wooden mould	
Made of steel sheet	It is generally made of	
	Shisham	
Sharp surface and corner	Compared to steel mould	
are achieved	is less	
Per day brick moulding	Its moulding capacity is	
capacity is less	more	

Note-

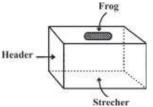
- Steel moulded bricks are good compared to wooden moulded bricks.
- Steel moulded brick are used in facing work.
- Internal dimension of mould is 10% more than completely burned brick. It is the approximately same as nominal size of brick.

Key Points

- The bricks which are extensively used for basic refractories in furnaces are According to IS : 1077-1992, non-modular size of
- the bricks is- 230×110×70 mm
 Body bricks are well burnt bricks occupying central portion of the kiln.

Civil Engineering Smart Scan

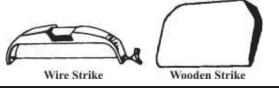
Size of various types of bricks-CHB JE 2023, UPRVUNL JE 2022, UPPCL JE 2022


MH WRD JE 2022, JSSC JE 2022, PPSC JE 2022 DSSSB JE (Tier-I) 2022, UPPCL JE 2020, SSC JE 2020

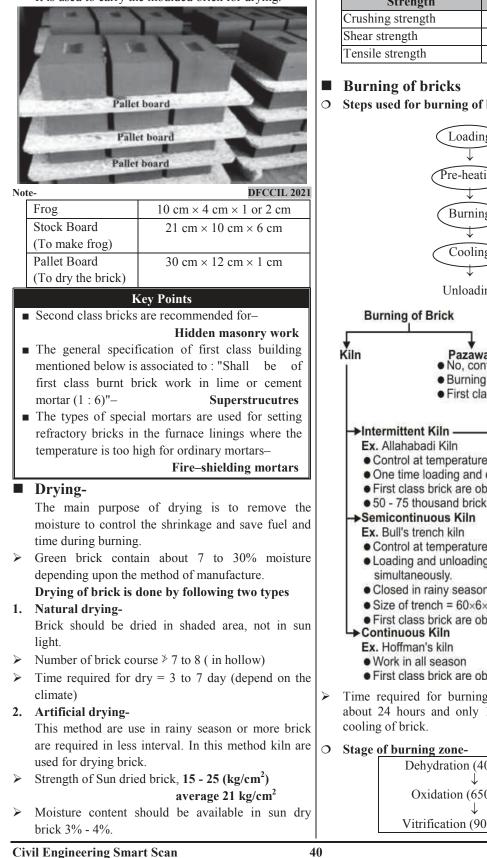
		KFSC JE 2010
Brick	Usual size	Nominal
Classification	Usual size	size
Conventional/ Traditional/ user size	$9"\times 4\frac{3}{8}"\times 2\frac{3}{4}"$	$9"\times 4\frac{1}{2}\times 3"$ or $(23\times 11.4\times 7.6)$ cm
Standard/ Modular/ Normal size	(19×9×9) cm	(20×10×10)cm
	(19×9×9) cm	/

90 mm

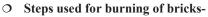
- Weight of modular brick is ≈ 3 kg.
- O Frog-
- UPPCL JE 2016, UKPSC AE 2022, SSC JE 2022, DDA JE 2023
 It is the depression on the top face of the brick made by stock board.
- Frog of brick is kept on the top while constructing a wall so that mortar is filled properly in it.
- Binding and shear strength of walls are increased due to frog.
- Object of frog is forming a key between two course of brick wall.

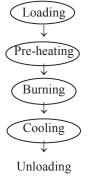

• Stock board- It is use for making frog on the surface of brick.

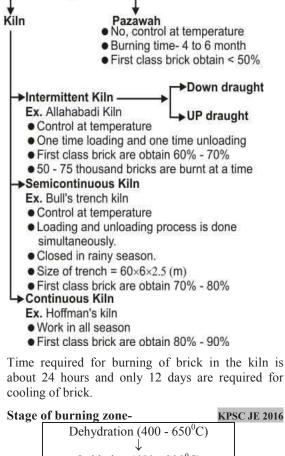
O Strike-


 \triangleright

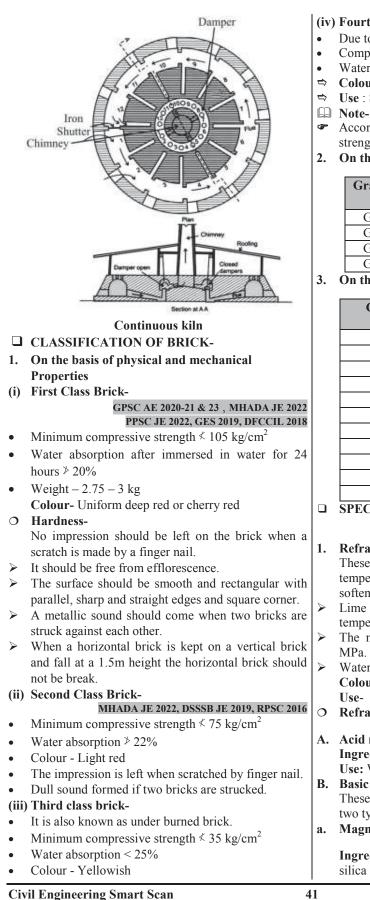
- It is use for removing excess soil from the surface of mould. These are two type-
- (i) Wire strike, (ii) Wooden strike


O Pallet board-


It is used to carry the moulded brick for drying.



BPSC AE 2018 | Strength of hand molded brick-


Strength	Value (in kN/m ²)
Crushing strength	60000
Shear strength	6000
Tensile strength	2000
	MH WRD JE 2022

Oxidation $(650 - 900^{\circ}C)$ Vitrification (900 - 1200° C)

(iv) Fourth class or jhama brick-

Due to over burned its shape and size are changed.

GPSC AE 2021

- Compressive strength = $300 350 \text{ kg/cm}^2$
- Water absorption = 8 10%
- Colour Dark blue
- Use : Soling coat of road and foundation.
- Note-
- According to IS code : bricks having compressive strength $< 35 \text{ kg/cm}^2$ should not be used.
- On the basis of grade (IS : 1071 1971)-

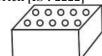
NBCC JE 2017, DFCCIL JE 2016	
Min. Compressive strength	
(kg/cm ²) ≮	
140	
105	
70	
35	

3. On the basis of compressive strength-

	UP Awash Vikash Parishad 2022	
Class	Average Compressive Strength	
	not less than (kg/cm ²)	
35	350	
40	300	
25	250	
20	200	
17.5	175	
15	150	
12.5	125	
10	100	
7.5	75	
5	50	
3.5	35	

□ SPECIAL TYPES OF BRICKS-

MPPGCL JE 2023, GPSC AE 2022 DSSSB JE 2019, NBCC JE 2018


Refractory brick/Fire resistance brick-These brick are capable to resist very high temperature up to 1500°C without melting or softening. RPSC ACF & FRD 2021 Lime quantity kept less so that brick burnt at high temperature of $1700 - 1800^{\circ}$ C. The minimum average compressive strength- 32.5 Water absorption- 4 - 10% Colour- Whitish yellow or light brown. Furnace lining, hollow tiles etc. Refractory bricks are following three types-UPPCL JE 2022, CGPSC AE 2021 A. Acid refractory brick-**Ingredient:** 95 - 97% silica + 1 - 2% lime Use: Where acidic slag are formed. B. Basic refractory brick-These are use where basic slag are made. These are two types-Magnesia refractory brick-RSMSSB JE 2022

Ingredient- 70% magnesium oxide (MgO) + 30% silica and alumina

- b. Dolomite refractory brick-In these brick is carbonate of calcium and magnesium [CaMg(CO₃)₂] are used as raw material Use : In shaft and rotary kilns, which are use for production of lime and cement.
- C. Neutral refractory brick-Ingredient of these brick are bauxite, silica and iron oxide. It is use where acidic or basic slag are made.
- 2. Hollow brick (IS : 3952)-A - Area of Hole

- Maximum hollow > 50% of total plan area.
- It is use for making sound proof and heat resistance wall.
- 3. Perforated Brick [IS: 2222]-

Total hollow area > 30 - 40% of total plan area. Use- Covering wall sound proof and heat insulating wall construction.

Compressive strength	\neq 7 N / mm ²
Water absorption	≯15%
Efflorescence	≯10%
Warpage	>3%

4. Over-burnt brick-

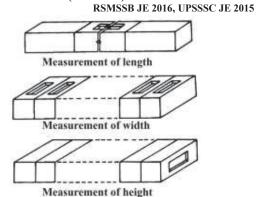
In over burnt brick a soft molten mass is produced and the brick loose their shape.

5. Under burnt brick-

NHPC JE 2022

When bricks are not burnt to cause complete vitrification, the clay is not softened because of insufficient heat and the pores are not closed. These brick have higher degree of water absorption and less compressive strength.

Sample required for various brick test-

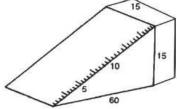

Sumple required for it		
Bricks Test	I.S. Code	No. of Sample
Compressive strength	3495-Part I	6
test		
Water absorption test	3495-Part II	5
Efflorescence test	3495-Part III	_
Warpage test	3495-Part IV	10
Dimension test	1077	20
V	D - * 4	
are caused in bi	Points	nod air tha
void of clay-	<i>v</i> 1	amination
5		
I is comparatively	1	
adhesive and cohesive p	1	Clay
 Refractory bricks are specified. 	ecially manufact	ured to-
wit	thstand high te	mperature
The most important pu	rpose of frog in	n a brick is
to-	- •	

Form keyed joint between bricks and mortar

Civil Engineering Smart Scan

□ TEST OF BRICK-

Dimension Test (IS : 1077)-



For 20 brick	Dimension (cm)	Tolerance (mm)
Length	380	± 80
Width	180	± 40
Height-		
(i) 9 cm	180	± 40
(ii) 4 cm	80	± 20

2. Warpage Test [IS : 3495 (Part-IV)]-

Warpage of brick is measured with half of a flat steel or glass surface and measuring ruler graduated in 0.5mm division or wedge of steel $60 \times 15 \times 15$ mm.

- 3. Efflorescence Test [IS : 3495 (Part III)]-APSC JE 2020, DSSSB JE 2019, ESE 2016
 - Aim- To find the alkali matter of soluble salts present in brick.
 - Efflorescence is characterized by the white patches on the surface of the brick.
 - Depth of water in container = 25 mm

Percent area covered by white Patches	Efflorescence
0%	Nil
0%-10%	Slight
10% - 50%	Moderate
>50% [But white patches does not change in powder form]	Heavy/severe
>50% [White patches	Serious
changes into powder form]	

The efflorescence to be not more than moderate (10 – 50%) for class 12.5 and not more than slight (< 10%) for higher class.</p>

Brick should be rejected if white powder available on the brick surface is > 50% of total area.

- 4. Compressive Strength Test [IS : 3495(Part-I)]-This test is performed by compression testing machine
- > Rate of loading = $140 \text{ kg/cm}^2/\text{minute}$
- Proportion of mortar to fill the frogs- 1:3
- 5. Water Absorption Test [IS : 3495(Part-II)]-Aim- To find out the existence of pores in brick.

w -	$W_2 - W_1$	-×100
~~ –	W_1	- 100

Where,

- w = Water absorption (in percent)
- W_1 = Weight of oven dry (105 ± 5^o C) brick
- W_2 = Weight of brick after immersion it in water for 24 hours.
- If w < 7% Then brick is high resistance to damage by freezing.

O Field test of brick earth-

- 1. Consistency test
- 2. Moulding test
- **3.** Deformation and shrinkage test
- 4. Strength test
- 5. Testing, nature of soil ground

DEFECT OF BRICKS

1. Under burnt-

Caused due to insufficient heat and are not able to carry the desire load.

2. Over burnt-It occurs due to extremely high heat and not suitable for construction work.

Lime bursting problem A common defect of bricks/tiles which

A common defect of bricks/tiles which is caused by the hydration of quick lime particles.

- By mixing common salt in black cotton soils, lime bursting can be prevented, 0.5% Sodium chloride is sufficient.
- > Put all the bricks in water just after they removed from the kiln, this process is called **docking**.
- 4. Efflorescence-Presence of drying grey or white powder patches on the brick surface is known as efflorescence.
- This defect is caused because of alkalis present in bricks.

5. Chuffs-

DSSSB JE 2019, MPSE 2018, SSC JE 2017 The deformation of the shape of bricks caused by the rain water falling on hot brick is known as chuffs.

6. Blister-

Broken blister are generally caused on the surface of sewer pipes and drain tile due to air imprisoned during their molding.

7. Lamination-

It is the thin lamina produces on the brick faces. **Cause-**Entrapped air in clay voids.

8. Bloating-

This defect observed as spongy swollen mass over the surface of burnt brick. It is caused due to the presence of excess carbonaceous matter and sulphur in brick clay.

9. Checks or Cracks-

This defect may be because of lumps of lime or excess of water.

10. Black core-

If bituminous matter or carbon is present in brick earth and they are not completely removed by oxidation, the brick result in black core. Prime cause of brick black core is improper burning.

11. Spots-

≻

0

Due to presence of iron sulphide in brick earth, the dark spots remains on the brick surface.

Unsuitable for exposed masonry work.

12. Brick spalling-

It is the irregular portion of the brick away or fall off from the surface.

Cause-Heating of water inside brick.

> IS : $3102 \rightarrow$ Classification of burnt clay solid brick.

Heavy duty burnt clay brick (IS : 2180)-

MP Vyapam 2022, ESE 2017 These are similar to burnt clay brick and of the same size but with high compressive strength.

 Burnt clay paving brick (IS : 3585)-These are used in drive ways and for land scaping parks and garden.

Compressive Strength $\leq 40 \, \text{N} \, / \, \text{mm}^2$

Water absorption $\geq 5\%$

- Soling brick [IS : 5779]-
 - These are used for soling of roads.
 - Compressive strength $\neq 5 \text{ N/mm}^2$
 - Water absorption $\geq 20\%$
 - Efflorescence $\geq 10\%$

 is known as illes. Burning of tiles is same as brick burning but some times tiles or clay products are burn in two times- 100 - 1100°C, after dipping the tiles/clay product in the solution of desired colour. SPECIAL TYPES OF CLAY PRODUCT- Stoneware. UPPCL JL 2016; 2022, UKPSC AE 2022, SCI E 2021 It is made from refractory clay mixed with crushed pottery, stone and sand, burnt at high temperature and cooled slowly. Stoneware consists of about 75% silica and 25% alumina. Iron oxide is added to give colour Ex-Domestic sewer pipe, wash basin, water closet, drains pipe and fittings. Earthenware. Carse made by burning ordinary clay at low temperature and cooling slowly. Glazed earthenware becomes resistant to weathering action. Ex- Frience. Majolica- It is talian earthenware coated with opaque white enamel, onamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- Theses are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia ad alkalis. It is capable of resisting very high temperatures up 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furneet liming, hollow tile sand crueibles. The clay used should have sufficient iron oxide and sand ground to fine powder and proged several times till ig ets uniform and soft for moulding. Terracotta sand ground to fine powder and proged several times till ig ets uniform and soft for moulding. Terracotta is refractory clay product and is used in ormamental parts of burding. The clay used should have sufficient iron oxide an alkaline matters. The c	TI	LES The clay product which thickness is less than 40mm	۶	It is used for manufacturing sanitary wares containers and crucibles, reactor chambers and
 It is make the oreal products are burnt in two timess. If is at 600 - 700°C is called biscuting and IT⁴⁴ is at 300 - 1100°C, after dipping the tiles/elay product in the solution of desired colour. SPECIAL TYPES OF CLAY PRODUCT- Stoneware- Tracta 2002, UKPSC AE 2022, SSC IE 2023, SSC IE 20				*
 J^a is at 600 - 700⁶C, is called biscuting and II^{ad} is at 900 - 1100⁶C, after dipping the tiles/clay product in the solution of desired colour. JSPECLAL TYPES OF CLAY PRODUCT- Stoneware- TFULLE 2016; 2022, UKPSC AE 2022, SSC JE 2022 It is made from refractory clay mixed with crushed pottery, stone and sand, burnt at high temperature. Thisse of glazing is 0.1 to 0.2 mm. Classification of glazing- Clay product is coated with NaCl solution and burne dat high temperature (1000⁶C - 1200⁶C) Opaque Glazing- Thisse are made by burning ordinary clay at low temperature and cooling slowly. Glazed earthenware becomes resistant to weathering action. Ext-Faicnee Mainfica- It is clay croduct sing and facing tiles. Fire Clay- Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%) alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700⁶C, without melting or softening and resist spalling. Fire Clay- The clay used with powdered glasses, potrery and sand ground to fine powder and pugged severation is refractory clay product and is used in mamental parts of building. The clay used should have sufficient iron oxide and and adalaine matters. The clay used should have sufficient iron oxide and and in the matters. Yone of a mamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. The clay used should have sufficient iron oxide and alkaline matter	\triangleright		0	Glazing-
 SPECIAL TYPES OF CLAY PRODUCT- Stoneware- LIPCL 14: 2016; 2022, UKPSC AE 2022, SSC JE 2022 It is made from refractory clay mixed with crushed pottery, stone and sand, burnt at high temperature and cooled slowly. Stoneware consists of about 75%, silica and 25% alumina. Iron oxide is added to give colour Earthenware- CPSC AT Case22202 These are made by burning ordinary clay at low temperature and cooling slowly. Glazed earthenware becomes resistant to weathering action. Ex-r Faience Majolica- It is Italian earthenware coated with opaque white camel, ormameted with metallic colour. Manufactured from low heat clays to which upt 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. Tis capable of resisting very high temperatures up 1700°C, without melting or softening and resist spalling. UPCL L2 202 (hencet) Clay is mixed with powdered glasses, pottery and and ground to fine powder and pugged severat times till it gets uniform and soft for moulding. Terracotta The clay used should have sufficient iron oxide and and alguine matters. The clay used should have sufficient iron oxide and and alumine matters. The clay used should have sufficient iron oxide and and aluine matters. The clay used should have sufficient iron oxide and and aluine matters. The clay used should have sufficient iron oxide and andalaline matters. The scan and impervious. Mcell Georem removes for downing of tamperature Mcell Georem removes for downing at tamperature and impervious. Mcell Georemover mere for downing of tamperature Mcell Geor	۶	I^{st} is at 600 - 700 ⁶ C is called biscuting and II^{nd} is at 900 -1100 ⁶ C, after dipping the tiles/clay product in		Glazing is a process of providing a glassy or impervious layer on the surface of clay product or ceramics.
 Stoneware- DPPCL JE 2016; 2022, UKPC AE 2022, SSC JE 2022 It is made from refractory clay mixed with crushed pottery, stone and sand, burnt at high temperature and cooled slowly. Stoneware consists of about 75% silica and 25% alumina. Iron oxide is added to give colour Ex-Domestic sewer pipe, wash basin, water closet. drains pipe and fittings. Exrthenware- Ex-Faience Majolica- It is Italian earthenware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up Thooly c, without melting or softening and retracotta- Uerrea cuta sinked with powdered glasses, pottery and and ground to fine powder and pugged severatitimes till it gets uniform and adia ground to fine powder and pugged severatitimes till it gets uniform and and ground to fine powder and pugged severatitimes till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ormamental parts of building. Terracotta is refractory clay product and is used in ormamental parts of building. Terracotta is for moulding. Terracotta is for forkentery clay product and is used in ormamental parts of building. Terracotta is refractory clay product and is used in ormamental parts of building. Terr			\succ	The glazing layer is fused to a ceramics body by
 If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of gazing is 0.1 0.0.2 min. If the states of the states of a lumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of line, magnesia and alkalis. If the states of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. If the states and eradius. If the states of the powder and pugged severat in ming, hollow tiles and crubies. If the state of the powder and pugged severat its of the own of the manufacturing process are surfaces of buick are called. If the scapand impe				
 It is made from refractory clay mixed with crushed pottery, show and sand, burnt at high temperatura and cooled slowly. Stoneware consists of about 75% silica and 25% alumina. Iron oxide is added to give colour ExDomestic sewer pipe, wash basin, water closet, drains pipe and fittings. Earthenware- GESC AE Class-2 2021 These are made by burning ordinary clay at low temperature and cooling slowly. Glazed earthenware becomes resistant to weathering action. Ex Faience Maujdica- It is Italian earthenware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use: Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Specific gravity of machine moulded brick - 14.2 kN/m² Stone chips or Broken brick are also known as surfaces of brick are called. The clay used should have sufficient iron oxide at and sand ground to fine powder and pugged severat times till it gets uniform and soft for mouding. The clay used should have sufficient iron oxide and alkaline matters. The clay used should have sufficient iron oxide at a sand ground to fine powder and pugged severat times till it gets uniform and soft for mouding. The clay used should have sufficient iron oxide at alkaline matters. The clay used should have sufficient iron oxide at alkali	0		\triangleright	Thickness of glazing is 0.1 to 0.2 mm.
 pottery, stone and sand, burnt at high temperature and cooled slowly. Stoneware consists of about 75% silica and 25% alumina. Iron oxide is added to give colour ExDomestic sewer pipe, wash basin, water closet. drains pipe and fittings. Carbenvare GPSC AE Class-22021 These are made by burning ordinary clay at low temperature and cooling slowly. Glazed earthenware becomes resistant to weathering action. ExFaience GPSC AE Class-22021 The seare made by burning ordinary clay at low temperature and cooling slowly. Glazed earthenware becomes resistant to weathering action. ExFaience GPSC AE Class-22021 The seare marehoware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use: Doorways, window casing and facing tiles. Fire Clay-These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPCL JE 2022 (PaperII) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged severat times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in transet ill it gets uniform and soft for moulding. The clay used should have sufficient iron oxide and akalis. The clay used should have sufficient iron oxide and akalis. The clay used should have sufficient iron oxide and akalis. The clay used should have sufficient iron oxide and akalis. The clay used should have sufficient iron oxide and akalis. The clay used should have sufficient iron oxide and akalis. The clay used should have sufficient iron oxide and akalis. The clay used should have sufficient iron oxide and akalis. The clay used should have				Classification of glazing-
 silica and 25% alumina. Iron oxide is added to give colour ExDomestic sever pipe, wash basin, water closet, drains pipe and fittings. Earthenware- CFSC AE Class-2 2021 These are made by burning ordinary clay at low temperature and cooling slowly. Glazed earthenware becomes resistant to weathering action. Ex Faience Majolica- It is talian earthenware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-III Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. Mueine further clay used should have sufficient iron oxide and alkaline matters. Mueine further clay is a different for brock and should have sufficient iron oxide and alkaline matters. Mueine further clay used should have sufficient iron oxide and alkaline matters. Mueine further clay brock and pugged several tile degrap to building. The clay used should have sufficient iron oxide and alkaline matters. Mueine matters. Mueine further clay brock and pugged several tile degrap to burder and pugged several tile de				MPSE 2018
 colour ExDomestic sewer pipe, wash basin, water clost, drains pipe and fittings. Earthenware- CFSC AE Class-2 2021 Borax, kaolin, chalk and colouring matter are grinding and mixing water and make solution which is called slip. Borax, kaolin, chalk and colouring matter are grinding and mixing water and make solution which is called slip. Borax, kaolin, chalk and colouring matter are grinding and mixing water and make solution which is called slip. Borax, kaolin, chalk and colouring matter are grinding and mixing water and make solution which is called slip. The clay product is dipped in slip and burnt in kiln Due to high temperature surface is change into impervious layer. The clay product is immersed in the mix of Lead and Tir oxides. The particles of Lead and Tin adhere the surface of clay products. This method of glazing is used for items of interior clay which cannot with stand high temperature required for salt glazing. Clay product is immersed in the mix of Lead and Tir oxides. The particles of Lead and Tir oxides. The particles of Lead and Tir oxides. The particles of salt glazing. Kerse Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to froken brick – 14.2 kN/m² Stone chips or Broken brick are also known assign aground to fine powder and pugged severat times till it gets uniform and soft for moulding. Terracottas The clay used should have sufficient iron oxide and alkaline matters. The clay used should have sufficient iron oxide and alkaline matters. The clay used should have sufficient iron oxide and alkaline matters. The clay used should have sufficient iron oxide and alkaline matters. The clay used should have sufficient iron oxide and alkaline matt			(i)	Transparent Glazing-
 Ex-Domestic sewer pipe, wash basin, water clostidrating products a light emperature (1000 C + 1200 C) and a light emperature (1000 C + 1200 C) and a light emperature (1000 C + 1200 C) and a light emperature (1000 C + 1200 C) and a light emperature and colouring matter are grinding and mixing water and make solution which is called slip. Borax, kaolin, chalk and colouring matter are grinding and mixing water and make solution which is called slip. Borax, kaolin, chalk and colouring matter are grinding and mixing water and make solution which is called slip. The clay product is dipped in slip and burnt in kiln Due to high temperature surface is change into impervious layer. It is talian earthenware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), lron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Specific gravity of machine moulded brick- 1.6 - 1.7 The kog formed by the intersection of plane surfaces of brick are called. The reacotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. The clay used should have sufficient iron oxide and alkaline matters. The clay used should have sufficient iron oxide and alkaline matters. The clay used should have sufficient iron oxide and alkaline matters. 				Clay product is coated with NaCl solution and
 drains pipe and fittings. Earthenware CPSC AE Class-2 2021 These are made by burning ordinary clay at low temperature and cooling slowly. Glazed earthenware becomes resistant to weathering action. Ex. Faience Majolica- It is Italian earthenware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UNESC AE 2022 (Paper-III Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged severat times till it gets uniform and soft for moulding. The clay used should have sufficient iron oxide and sand ground to fine powder and pugged severat times till it gets uniform and soft for moulding. Theracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is chap and impervious. Media formerous. Mufit the mean and impervious. Mufit the formerous in the provide and pugged severat it is clay used should have sufficient iron oxide and alkaline matters. The schap and impervious. Mufit the formerous. Mufit the provide time of the magnetia added in the manufacturing process are called- Forsterite brick portice in g/cm² - 1.8 to 2.5 The water absorption of heavy duty burnt clay bricks having compressive strength greater than 40 N/mm² is - 10%				burned at high temperature $(1000^{\circ}C - 1200^{\circ}C)$
 Carthenware- GPSC AE Class-22021 These are made by burning ordinary clay at low temperature and cooling slowly. Glazed earthenware becomes resistant to weathering action. ExFaience Majolica- It is Italian earthenware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700^oC, without melting or softening and resist spalling. UPCL JE 2022 Uses For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-III) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Med b force rear was for howing and resist brick made from Olivine rock to which magnesia added in the manufacturing process are called - Forsterite brick Density of brick in g/cm² - 1.8 to 2.5 The water absorption of heavy duty burnt clay bricks having compressive strength reart and N/ M/mm² is- 10% 			(ii)	Opaque Glazing-
 GPSC AE Class-2 2021 Borax, kaolin, chalk and colouring matter are grinding and mixing water and make solution which is called slip. The clay product is dipped in slip and burnt in kiln Due to high temperature surface is change into manented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL E 2022 Specific gravity of machine moulded brick- 2 specific gravity of machine moulded brick- 2 Specific gravity of machine moulded brick- 1.6-1.7 The clay used should have sufficient iron oxide and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffle formere. Muffle formere. Muffle formere. Muffle formere for hourding. The scheap and impervious. Muffle formere. Muffle formere. Muffle formere. Muffle formere are used for houring matter at the scheap and impervious. Muffle formere for moulding. The scheap and impervious. Muffle formere. Muffle formere for houring of tarmenet. Muffle formere formoulding. The scheap and impervious. Muffle formere. Muffle f	0		\succ	This is also known as enameling.
 These are made by burning ordinary clay at low temperature and cooling slowly. Glazed earthenware becomes resistant to weathering action. ExFaience Majolica- It is Italian earthenware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, withour melting or softening and resists spalling. UPCL JE 2022 Veracotta- Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times til it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffle Germens of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffle Germens of the burging of tarmaetal alkaline matters. Muffle Germens of the burging of tarmaetal alkaline matters. Muffle Germens of the burging of tarmaetal alkaline matters. Muffle Germens of the burging of tarmaetal alkaline matters. Muffle Germens of the burging of tarmaetal alkaline matters. Muffle Germens of the burging of tarmaetal alkaline matters. Muffle Germens of the burging of tarmaetal alkaline matters. Muffle Germens of the burging of tarmaetal alkaline matters. Muffle Germens of the burging of tarmaetal alkaline matters. Muffle Germens of tarmaetal form Oliving of the burgen of tarmaetal alkaline matters. Muffle Germens of the burgen of	0		\succ	Borax, kaolin, chalk and colouring matter are
 becomes resistant to weathering action. Ex-Faience Majolica- It is Italian earthenware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL E 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged severat times till it gets uniform and soft for moulding. Terracotta: Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. The is cheap and impervious. > Media form meters. > Meters and impervious. 		These are made by burning ordinary clay at low		grinding and mixing water and make solution which
 Ex Faience Majolica- It is Italian earthenware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting on softening and resist spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta : IKPSC AE 2022 (Paper-II) Clay use should have sufficient iron oxide and alkaline matters. Tt is cheap and impervious. 		1 0 1		
 Majolica- It is Italian earthenware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resists spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-III Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muthe function of the powders. Muthe function of the powder of the powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muthe function of the powder of the target and the the manufacturing the brick of the target and th		-	≻	
 It is Italian earthenware coated with opaque white enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resists spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. The clay used should have sufficient iron oxide and alkaline matters. Multic furgence or on use for humine of targetory is characetar to the lay used should have sufficient iron oxide and alkaline matters. Multic furgence or on use for humine of targetory is characetar. Withe furgence or on use for humine of targetory is characetar. Withe furgence or on use for humine of targetory is characetar. Multice furgence or on use for humine of targetory is characetar. Withe furgence or on use for humine of targetory is clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. Multice furgence or on use for humine of targetory is characetar. Withe furgence or on use for humine of targetory is characetar. Were for the optice furgetory is characetar. With the furgetory or on the optice of the optice of the optice. Terracotta: Terracotta is	-			
 enamel, ornamented with metallic colour. Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700%C, without melting or softening and resist spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-II) Clay product is immersed in the mix of Lead and Tin oxides. The particles of Lead and Tin adhere the surface of clay products. This method of glazing is used for items of interior clay which cannot with stand high temperature required for salt glazing. Utrix weight of broken brick – 14.2 kN/m³ Stone chips or Broken brick – 14.2 kN/m³ Stone chips or Broken brick – 14.2 kN/m³ Stone chips or Broken brick – 161.7 The No. of Compartment in Hoffman's Kiln is- The edge formed by the intersection of plane surfaces of brick are called- Arrises The sof building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffle forme on or we for horized and Tin or addition the mature absorption of heavy duty burnt clay bricks having compressive strength greater than 40 N/mm² is- 	0			
 Manufactured from low heat clays to which up to 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- The Clay- 			(iii)	8
 20% calcium carbonate added in the form of chalk. Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. Mthe form and soft tor moulding. The clay used should have sufficient iron oxide and alkaline matters. Mthe form and soft tor moulding. The clay used should have sufficient iron oxide and alkaline matters. Mthe form and soft tor moulding. The clay used should have sufficient iron oxide and alkaline matters. Mthe form and soft tor moulding. The water absorption of heavy duty burnt clay bricks having compressive strength greater than 40 N/mm² is- 10% 	\triangleright			
 Use- Doorways, window casing and facing tiles. Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. Mille furnace and impervious. Mille furnace and impervious. Sufface of clay products. This method of glazing is used for items of interior clay which cannot with stand high temperature required for salt glazing. Unit weight of broken brick – 14.2 kN/m³ Stone chips or Broken brick are also known as- Spall Specific gravity of machine moulded brick- 2 Specific gravity of hand moulded brick- 1.6 - 1.7 The edge formed by the intersection of plane surfaces of brick are called- The brick made from Olivine rock to which magnesia added in the manufacturing process are called- Forsterite brick Density of brick in g/cm² - 1.8 to 2.5 The water absorption of heavy duty burnt clay bricks having compressive strength greater than 40 N/mm² is- 10% 	<i>,</i>			*
 Fire Clay- These are pure hydrated silicates of alumina and contain a large proportion of silica (55-75%), alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Metho formeon on use for humine of targenetite N/mm² is- 10% 				
 Induct of a large proportion of silica (55-75%), alumina (20-35%), iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-III) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffler, furnance are used for humine of terracetta. 	0	Fire Clay-		•
 alumina (20-35%), Iron oxide (2-5%) with about 1% of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Utile formed of the provide several time till is cheap and impervious. Muthe form on use for huming of terracetta Muthe form on the provise of terracetta<td></td><td></td><th></th><td></td>				
 of lime, magnesia and alkalis. It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- WKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muftle formace area use for huming of termenting. Stone chips or Broken brick are also known as-Spall Stone chips or Broken brick are also known as-Spall Stone chips or Broken brick are also known as-Spall Specific gravity of machine moulded brick- 2 Specific gravity of machine moulded brick- 1.6 - 1.7 The No. of Compartment in Hoffman's Kiln is- The edge formed by the intersection of plane surfaces of brick are called- Arrises The brick made from Olivine rock to which magnesia added in the manufacturing process are called- Forsterite brick Density of brick in g/cm² - 1.8 to 2.5 The water absorption of heavy duty burnt clay bricks having compressive strength greater than 40 N/mm² is- 10% 			7	
 It is capable of resisting very high temperatures up to 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffle furnese are use for huming of terments 				÷
 1700°C, without melting or softening and resist spalling. UPPCL JE 2022 Specific gravity of machine moulded brick- 2 Specific gravity of hand moulded brick- 1.6 - 1.7 Specific gravity of hand moulded brick- 1.6 - 1.7 Specific gravity of hand moulded brick- 1.6 - 1.7 The No. of Compartment in Hoffman's Kiln is- 8 to 24. The edge formed by the intersection of plane surfaces of brick are called- Arrises Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffle furnece or was for huming of terrecetta 				*
 spalling. UPPCL JE 2022 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Wuffle formed on the manufacturing of terracotta Specific gravity of hand moulded brick- 1.6 - 1.7 The No. of Compartment in Hoffman's Kiln is- 8 to 24. The edge formed by the intersection of plane surfaces of brick are called- Arrises The brick made from Olivine rock to which magnesia added in the manufacturing process are called- Forsterite brick Density of brick in g/cm² - It is cheap and impervious. Muffle formed on the process of terracetta of the surface of the process of the surface of the surface of the process of the			Δ	
 Use- For manufacturing fire bricks used in furnace lining, hollow tiles and crucibles. Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffla formace are use for humine of terrecetta 				
 Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffla formage are use for humping of terrecetta 		Use- For manufacturing fire bricks used in furnace		
 Terracotta- UKPSC AE 2022 (Paper-II) Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. The sedge formed by the intersection of plane surfaces of brick are called- Arrises The brick made from Olivine rock to which magnesia added in the manufacturing process are called- Forsterite brick Density of brick in g/cm² - It is cheap and impervious. Muffle formed on the powder of the pow		lining, hollow tiles and crucibles.	^	
 Clay is mixed with powdered glasses, pottery and sand ground to fine powder and pugged several times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Wuffle formage are use for humping of terrecetta 	0		\geq	
 The brick made from Olivine rock to which magnesia added in the manufacturing process are called— Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. The state of the process of the proce				- · · ·
 bind ground to find provider and proget between times till it gets uniform and soft for moulding. Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffla formace are use for huming of terrecetta 			\triangleright	
 Terracotta is refractory clay product and is used in ornamental parts of building. The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffla, formage are use for huming of terrecetta 				
 The clay used should have sufficient iron oxide and alkaline matters. It is cheap and impervious. Muffla formage are use for humping of terrecetta. 	\triangleright			
alkaline matters. > It is cheap and impervious. > Muffla, formance are used for huming of terresottal > N/mm ² is- 10%		ornamental parts of building.	\succ	Density of brick in $g/cm^2 -$ 1.8 to 2.5
 It is cheap and impervious. N/mm² is- 10% 	\succ		\succ	The water absorption of heavy duty burnt clay
Muffle furness are use for huming of temperature				
				N/mm ² is- 10%
product		Muffle furnace are use for burning of terracotta	\succ	The formation of dull patches occurs on the
O Porcelain, UPSSC IE 2022 CES 2017	0			*
A high grade ceramic ware having white colour zero P lesting of vitrified and ceramic tiles is done	0		≻	-
water absorption and glazed surface. according to- IS : 15622 - 2006				c
➢ Porcelain is fine earthenware which is white, thin Classification and characteristics of ceramic tiles-	\triangleright	Porcelain is fine earthenware which is white, thin		
and semi-transparent. IS:13712-1993		and semi-transparent.		IS:13712-1993

Civil Engineering Smart Scan

03.

LIME

			1	
	Introduction			Carbonate hardening-
	Lime is a binding material f			In this process slaked lime reacts with CO_2 and set
	stone. It is not found in free			& hard. $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O + Heat$
\triangleright	Lime is obtained from the ca	alcinations of lime stone.	-	Key Points
*	Sources of Lime-			Lime mortar for structural purpose is generally
		DSSSB JE 2022		made with– Hydraulic lime
	Type of Stone	Type of lime		Lime is obtained by burning limestone at a
	Lime Stone (CaCO ₃)	Pure Lime		temperature of about– 800°C
	Kankar	Hydraulic Lime		The unit of measurement and payment for supply
	Dolomite (MgCO ₃)	Magnesia Lime		of lime unslaked– Quintal or cubic metre
	Gypsum (CaSO ₄ .2 H_2O)	Sweet Lime		The product that is formed after the heating of
	Shell, Chalk	Pure Lime		gypsum at 393 K and evaporation of 75% of water
*	Lime and its chemical form	nula-		content from it- Plaster of Paris
	Name of Lime	Chemical Formula		Various types of lime-
	Lime Stone	Calcium Carbonate	1.	Pure lime/Fat lime/White lime/Rich lime-
		[CaCO ₃]		ESE 2022, DSSSB JE 2022, UPRVUNL JE 2022,
	Lime, Quick lime, Lump	Calcium oxide		ESE 2020, PGCIL DT 2018, GES 2017
	lime, White lime, Rich	[CaO]		It slakes rapidly and its volume increase by 2-2.5
	lime, Pure lime	2		times than its original volume.
	Slaked lime, Fat lime	Calcium Hydroxide	\succ	These lime contain 95 to 97% calcium carbonate
		[Ca(OH) ₂]		(CaCO ₃) and quantity of impurity does not increase
	Plaster of Paris (P.O.P.)	Calcium Sulphate		more than 2 to 3%.
		$[CaSO_4.1/2 \hat{H}_2O]$	\succ	It is manufactured by burning of marble, white
	Gypsum	Calcium Sulphate		chalk, sea shell and coral.
		$[CaSO_4.2H_2O]$		Use-Plastering and white washing.
0	Calcination-		2.	Lump lime-
		2020, SSE 2020, PSPCC 2020	2	It is obtain in the form of lump after calcination.
	The process under which		3.	Quick lime/Caustic lime- It is obtained immediate after calcination is called
	800° C to 900° C to removed	CO_2 & moisture is called		
	calcination.		4.	Quick lime. Slaked lime-
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CaO LCO 1	4.	
	Lime stone Calcination	\rightarrow Quick Lime $+ CO_2 +$		The lime whose hydration is completed is called slaked lime.
0			5.	Magnesia lime-
0	Slaking of Lime-	ESE 2023, DSSSB JE 2022	5.	It is manufacture by calcination of dolomite. It
	In this process quick lime			contain 20 to 35% magnesia.
	formed $Ca(OH)_2$.		•	Colour - Reddish
\triangleright	Volume increases 2 to 2.5 ti	mes of its initial volume.	0	Types of lime on the basis of Impurities-
			1.	Pure lime- Impurities < 5%
	$\frac{\text{CaO}}{\text{Lime}} + \frac{\text{H}_2\text{O}}{\text{Water}} \xrightarrow{\text{slaking}} S$	Heat	2.	Impure lime- Impurities >5%
			2.	Impure lime is following two types-
>	Slaking is an exothermic rea		(i)	Lean lime or Poor lime/Impure lime-
	Type of lime	Slaking time	(1)	UPRVUNL JE 2022
	Lump lime, Quick lime			It consists 80% CaO, less than 5% MgO and clay
	Rich lime, Pure lime, Fa	2 to 3 hrs.		impurities more than 7% in the form of silica,
	lime, White lime			alumina and iron oxide.
	Hydraulic lime, Poor lime	e, 12 to 48 hrs.	\geq	Setting and hardening process is very slow.
	Lean lime		\geq	It's expansion is less than that of fat lime.
0	Hardening or setting of lin		(ii)	Hydraulic Lime- JSSC JE 2020, SSC JE 2017
	It depend on the types of	lime and its hardening	È	It is capable to setting under water and in damp
	condition. It is three types-			situation.
	i). Carbonate Hardening			MHADA JE 2022
	ii). Hydrate hardening			Impurity range- 5 to 30%.
	iii). Hydrosilicate hardening	2	\succ	setting time under water- 7 to 30 days.
Civ	il Engineering Smart Scan	4	5	УСТ
	8		-	

♦ Hydraulic lime is classified into further three categories-

-			BPSC AE 2022
Item description	Feebly Hydraulic lime	Moderate Hydraulic lime	Eminently Hydraulic Lime
% Impurities	05 to 10%	11 to 20%	21 to 30%
Slacking action	Few minutes	1 or 2 hours	1 day or more
Setting action	3 week or more	1 week or more	1 days or more
Hydraulicity	Feebly	Moderate	Eminently
Use	Used for ordinary masonry work	For superior type of masonry work	Use in very damp places

Classification of Lime as per BIS : 712-1984-DSSSB 2019 & 2022, DSSSB JE (Tier-I 2022) DSSSB JE (TIER-I) 2022

		D555D 0E (11ER-1) 2022
Class of	Example	Use
lime		
Class A	Eminently Hydraulic lime	Hydraulic structure
Class B	Semi Hydraulic lime	Masonry and in lime
		concrete
Class C	Pure lime/Fat lime	Plaster work
Class D	Magnesium	White washing and
	lime/Dolomite lime	finishing
Class E	Kankar lime	Masonry mortar
Class F	Siliceous dolomite lime	-

Test of lime-

Visual Inspection Test-1

Class of lime	Colour
Class A	Dirty white
Class B	Light dirty white
Class C	White

Lumps of lime indicates quick lime or unburnt lime.

2. HCl Test/Acid Test-

This test is perform to find out impurities and amount of calcium carbonate.

- A teaspoon of powdered lime is taken in the test tube and 10 ml of 50% dilute hydrochloric acid (HCl) is added to it, and heat for few minute.
- If bubble is formed during heating it indicate \geq calcinations of lime is not done perfectly.

Class of lime	Description
Class A	Good gel is formed above the layer
	of inert material.
Class B	A thick gel formed
Class C	Absence of gel

3. Ball Test-

Balls (40 mm size) of stiff lime paste are made and left for 6 hours. After six hours, the balls are immersed in a water basin. If expansion and disintegration of balls is observed, the lime is of type C. Little expansion and numerous crack indicate it to be class B lime. Class A lime will have no adverse effect.

- Fineness Test [IS : 6932 (Part-IV)]-This test is perform with the help of sieve.
- 5. Workability Test [IS: 6932 (Part-VIII)]-
- ESE Pre. 2023

Civil Engineering Smart Scan

To judge the workability of lime sample 1:3 lime sand mortar is prepared and thrown on the brick wall by trowel, if it sticks well, its workability is good.

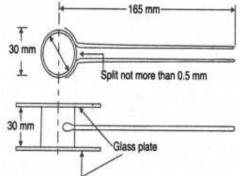
Impurity Test-6.

A known weight of lime is mixed with water and make solution.

% Weight of residue	Types of lime
< 10 %	Good quality lime
10% - 20%	Fat lime
> 20%	Poor lime

Setting time Test-7.

 \triangleright


Initial and final setting time of lime is determinate with the help of Vicat's apparatus.

 \geq It is the same way as that for cement test.

Soundness Test [IS : 6932 (Part-IX)]-8.

Aim-To find out the quantity of free lime, unsoundness and disintegration property of lime.

This test is conduct with the help of Le-chatelier apparatus.

- External diameter of cylinder of Le-chatelier apparatus = 30 mm
- The expansion of indicator should not be more than 10mm
- 9. Compressive Strength Test [IS: 6932 (Part -II)]-

12 cube of 50mm sides are prepared from standard lime sand mortar (1:3)

6 Cube are tested after 14 day's and remaining 6 ≻ cube are tested after 28 day's with the help of compression testing machine.

Rate of loading- 150 N/min

- Note-
- Carbide lime is a by-Product of manufacturing of acetylene.
- Barium plaster is used as final coat for surface of X-Ray room.

* Unit weight of lime-

Type of lime	Unit weight (kg/m ³)
Unslaked lime	1050
Slaked lime	640
Hardened lime	800

Lime putty is the plastic paste of lime and water. ≻

Class of lime	Modulus of rupture (kg/cm ²)
Class A (Hydraulic lime)	≥ 10.5
Class B	≥ 7
(Semi hydraulic lime)	

Potash- lime glass is also known as Bohemian glass.

04.

CEMENT

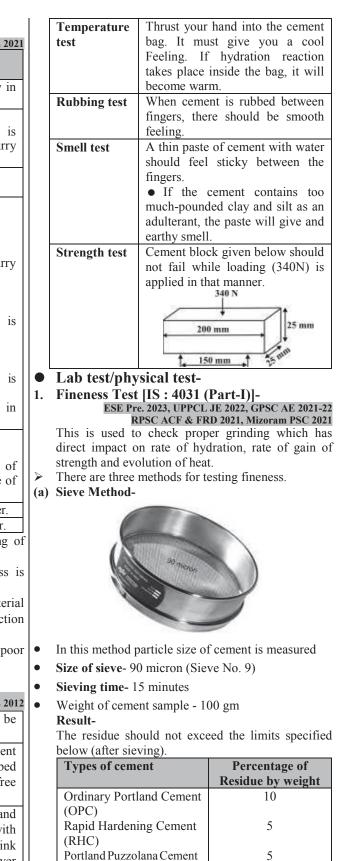
■ Ir	ntroduction-			≻			y increases the setting
_			D JE 2022, UPSSSC JE 2022		time and s		
			ve material which are	≻		Ũ	ent and participate the
	obtained by burning and grinding of calcareous and				of Bogue compoun		
	argillaceous material at very high temperature and			≻			-burnt or free lime is
	inding the clinker						layed hydration causing
			binding material.		expansion	(unsoundness) and	deterioration of mortar
	ange of cement pa				and concre	ete.	
	eneral ingredients		nt-	\succ	Deficiency	y of lime in cement	reduces it strength and
	Calcareous rocks				causes it to	o set quickly.	
<pre></pre>) Argillaceous roc			0	Silica (SiC	D ₂)-	ESE 2014
	hemical Composi			\succ	It is respon	nsible for strength.	
	ESE Pre. 202 PPSC JF	3, PGCIL 7 2022 ISS	DT 2023, MH WRD JE 2022 C JE 2022, SJUNL JE 2021	\succ	High silica	a content prolongs t	he setting time.
			ISRO 2017, MPSE AE 2017	\succ	Responsib	le to make C ₃ S and	C_2S compound.
Oxi	de/Composition		Function	0	Alumina	$[Al_2O_3]$ -	*
	/Average					CGPSC	AE 2022, RSMSSB JE 2021
	composition			\succ	1	nsible for quick set	6
Lime	e (CaO)		& soundness control,	\succ		quantity causes low	er the strength.
	$60\text{-}65\%\approx 63\%$	deficient	cy reduce strength	0		$e [Fe_2O_3]-$	
Silica	Silica (SiO ₂) Due to excess reduces strength		\succ	It is respon	nsible for colour.		
	$17-25\% \approx 20\%$ and slow setting		\succ	It act as flu	ux.		
Alum	nina (Al ₂ O ₃)	Respons	ible for quick setting if	0	Magnesia		
	3-8% » 6%		s then lowers strength	\succ	It is respon	nsible for colour an	d hardness.
Iron	Iron oxide(Fe ₂ O ₃) Used as flux		\succ	If present	in excess quantity i	t causes unsoundness	
	0.5-6% ≈ 3%		0	Sulphur T	Frioxide (SO3)-		
Mag	Magnesia (MgO) Imparts colour & hardness					DDA JE 2023	
0.5- 4% ≈ 1%					antities it increases the		
Gyps		Used as	retarder	_		e and causes of uns	
- J F -	2-5% ≈ 4%			0		Sulphate (CaSO ₄ .	
Sulp	hur (SO_3)	Impart s	oundness				sum during grinding of
Sulpi	1-3% ≈ 1%	in pure s				increase the setting	time of cement.
Alka		Used as	flux &		It acts as a	retarder.	
¹ ind	$\frac{0.2-1\%}{100} \approx < 1\%$		0	Alkalis-			
	he quantity of S	ulphur t	rioxide (SO ₂) in OPC		It onlog T	fflorescores	RPSC ACF & FRD 2021
The quantity of Sulphur trioxide (SO ₃) in OPC cement should not be more than 3%.				It causes Efflorescence. Alkalis accelerate setting of cement paste.			
 Function of Ingredients of Cement- 					-	*	
	-					ition of Cemen	
	CHB Jr. Draftsman 2023, SSC JE 2022						JE 2022, MH WRD JE 2022 SB JE 2021, GPSC AM 2020
	RPSC ACF & FRD 2021, SSC JE 2017			\triangleright	It is also known as Bogue compound and formed		
It is major ingredient of cement and act as binder.		Ĺ		ikering Process.	compound and formed		
				I	44111 <u>5</u> 0111	-	XAIGA SA 2022, NHPC JE 2022
	Name of Comp	ound	Percentage		Other	Heat of	Function
	comp	- dina	rereentuge		Name	Hydration	T unction
_	Г.'. 1.'. <u>С'</u> !'.	1	25 500/ 400/		Alia		7.D. 1.1.1.1

Name of Compound	Percentage	Other	Heat of	Function
		Name	Hydration	
Tri-calcium, Silicate	$25 - 50\% \simeq 40\%$	Alite	500 J/g	7 Days hardness and
$[C_3S]$				strength
Di-calcium Silicate [C ₂ S]	$25 - 40\% \simeq 32\%$	Belite	260 J/g	Ultimate strength
Tri-calcium Aluminate	5 - 11% ≃ 10.5%	Celite	865 J/g	Flash set
[C ₃ A]			_	
Tetra-calcium Alumino	8 - 14% <i>~</i> 9%	Felite	420 J/g	Poorest cementing
Ferrite [C ₄ AF]			_	value

Civil Engineering Smart Scan

WNote-			Increase the total heat of hydration.
	C ₃ A	•	Increase 28 day's strength.
RP 1	C_4AF Responsible for initial setting time (mainly C_3A)	•	Decrease the ultimate strength.
		•	Decrease the capability to resist the chemical and
	C_3S Responsible for strength (mainly C_3S)		Sulphur attack.
	C_2S	•	If fineness of cement is increases then-
0	Tri-calcium silicate (3CaO.SiO ₂)-	•	Strength of cement is increases.
	RSMSSM JE 2022, KPSC AE 2021, TNPSC 2021	•	Rate of hydration increases.
	It help (render) the clinker easier to grind, increases	•	Rate of heat of hydration increases.
	resistance to freezing and thawing and develops an	•	No effect on total heat of hydration.
\triangleright	early hardness and strength. If C_3S content raising to beyond the specified limit	•	No effect on setting time.
	increase the heat of hydration and solubility of	•	Rate of gain of strength increases.
	cement in water.	•	Value of shrinkage/contraction increases.
0	Di-calcium Silicate (2CaO.SiO ₂)-	•	% Value of C ₃ A is increases then-
	CHB JE 2023, UKPSC AE 2022, UKPSC AE 2022	•	Initial setting time is decrease.
	GPSC AE 2022, UPSSSC JE 2022, ESE 2021 WBPSC AE 2021	•	Rate of hydration is increase.
	It hydrates and harden slowly and take long time to	•	The value of total heat of hydration is increase.
	imparts strength.	•	There is no effect on strength.
\triangleright	It imparts resistance to chemical attack.	•	If % value of C ₂ S is increases and C ₃ S is
\succ	It is responsible for ultimate strength.		decreases then- DDA JE 2023
0	Tri-calcium Aluminate [3CaO.Al ₂ O ₃]-	•	Increase the ultimate strength.
	DSSSB JE (Tier-I) 2022, UKPSC JE 2022, SJVN 2019 C_3A is responsible for higher heat of hydration,	•	The value of 28 day's strength is decreases.
	initial setting, low resistance to sulphate attacks, heat	•	Increase the capacity to resist chemical attack.
	of hydration, and lowers the ultimate strength.	•	Value of total heat of hydration is decreases.
0	Tetra-calcium Alumino Ferrite	•	This type of cement is prefer in the construction of
	[4CaO.Al ₂ O ₃ .Fe ₂ O ₃]-		hydraulic structure.
	As increase the C_4AF content the strength reduces		Hydration of cement-
~	slightly.		If water is added to cement a chemical reaction
	C_3A is start the hydration but C_4AF has highest rate of hydration.		between water and cement starts so that, heat
•	Dormant Period or induction period-		produces, this is called heat of hydration and the
•	When water is poured into cement, then cement		process of reaction with water is called hydration of
	particle starts reaction with water. This reaction		cement.
	proceeds slowly for 2 to 5 hours and is called	0	Water requirement for hydration of cement-
	dormant period.		RSMSSB JE 2022, SJVNL JE 2021
	Order of rate of hydration-		GPSC AE 2021, PSTCL AE 2021 Bound water - 23% of cement weight
	$C_4AF > C_3A > C_3S > C_2S$		Gel water - 15% of cement weight
	Order of rate of heat of		So minimum water required for complete hydration
	hydration/hardening-		is 38% of cement weight.
	RSMSSB JE 2022, UPJN AE 2016	-	Chemical reaction of cement with water is an
	$C_3A > C_3S > C_4AF > C_2S$		exothermic process.
	Order of strength- UJVNL AE 2016		Manufacture of cement-
	$\boxed{C_3S > C_2S > C_3A > C_4AF}$	1.1	Mixing 2. Burning 3. Grinding
			Clay Raw Mill Raw Mill Silo Suspension Preheater
	Reaction with water-	A	
	$C_3A > C_4AF > C_3S > C_2S$		
\triangleright	The above sequence is valid when all compound are	1	
	taken in equal quantity.		
•	If quantity of C_3S is increase and C_2S is	Dis	spatch
	decrease then- OPSC 2018	9	Rotary Kiin
•	Increase the rate of hardening.	0.	
-	Increase the rate of heat of hydration.		Gypsum Clinker Silo
Civ	vil Engineering Smart Scan 4	8	УСТ

Tools used in Production of Cement-			
	JSSC JE 2022, JPSC AE 2021		
Name of Tools	Use		
Gyratory	To crushed the lime stone and clay in		
Crushers	the range of 20 to 50 mm size.		
Wash mill	For wet grinding of raw materials.		
	The grinded material which is		
	produced by wash mill is called slurry		
	and it has 40% moisture content.		
Silo/storage	For the storage of cement.		
tank			
Rotary kiln	It is used for burning of slurry.		
Length	It has following three chambers-		
90 - 120 m	(i) Drying Zone		
Diameter	• Temp. 250° C to 500° C		
1 - 2 m	• In this chamber moisture of slurry		
	is evaporate.		
	(ii) Calcinations Zone–		
	• Temp. 700° C to 1200° C.		
	• The calcinations of lime is		
	complete in this chamber.		
	(iii) Clinker Zone-		
	• Temp. 1500° C to 1700° C.		
	• Clinker (size- 5 to 10mm) is		
	formed in this chamber.		
	• Bogue compound are formed in		
	this chamber.		
Rotary	It is used for cooling of clinker.		
cooler	 Here clinker cools slowly. 		
	• The strength and quality of		
	cement is depend upon the rate of		
	cooling of clinker.		
Ball mill	It is used for coarse grinding of clinker.		
Tube mill	It is used for fine grinding of clinker.		
➢ Gypsum is	added in cement during the grinding of		
cement.			

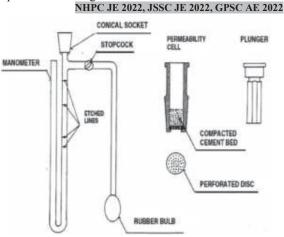

The production cost of cement in dry process is more than that of wet process.

 Quality of cement is good in wet process while poor in dry process.

TEST OF CEMENT

Field Test-	APPSC AEE 2012	
Colour test	The colour of OPC should be	
	greenish grey.	
Lump Test	The Presence of lumps in cement	
	indicates that it has absorbed	
	moisture. Cement should be free	
	from presence of any lumps.	
Float test	Take a handful of cement and	
	throw it in a bucket filled with	
	water cement particle should sink	
	in water it should not float over	
	the water surface.	

Civil Engineering Smart Scan


(PPC)

The dry process is adopted when the raw material are quite hard. This process is slow and production cost is high.

(b) Air Permeability Method or Nurse & Blains 2. Normal/Standard Consistency Test [IS:5513-Method-

MH WRD JE 2022, PSTCL AE 2021 Fineness is represented in terms of specific surface area (cm^2/gm)

This test is based on relationship between flow of air through cement bed and surface area of cement particles forming the bed.

Blains air permeability apparatus

- In this method surface area of the cement is measured.
- Minimum specific surface area of cement-MHADA JE 2022, JSSC JE 2022

RSMSSB JE 2022, DFCCIL JM 2				
Types of cement	Specific Surface area			
	≮ cm²/gm			
Ordinary Portland	2250			
Cement (OPC)				
High Alumina Cement	2250			
(HAC)				
Portland Puzzolana	3000			
Cement (PPC)				
Low Heat Cement	3200			
(LHC)				
Rapid Hardening	3250			
Cement (RHC)				
Hydrophobic Cement	3500			
(H.C.)				
Super Sulphate Cement	4000			
(SSC)				

(c) Sedimentation Method or Wagner Turbidity Meter Method-

In this method surface area one gram of cement is measure. Reading are expressed in square cm per gram.

O Factors affecting the fineness of Cement-PPSC JE 2022

- Chemical Composition.
- Degree of Calcinations.
- High Iron and silica content in clinker.
- Time of grinding.
- Character of the pulverizing machine.

Civil Engineering Smart Scan

1976, IS: 4031 (Part-4 1988)]-JSSC JE 2022, UPPCL JE 2022, CGPSC AE 2022

MBCC JE 2022, SSC JE 2018

The standard consistency of the cement paste is defined as percentage of water added in 300 g weight of cement which will permit a vicat plunger to penetrate in cement paste to a depth of 33 to 35 mm from the top of the mould or rest from bottom 5 to 7 mm. 300 g Release Pin 0 mm dia 3.3 0.5 mm 5 mm JSSC JE 2022, UPRVUNL JE 2022 300 gm • Weight of cement sample Diameter - 80 mm, • Size of mould Height - 40 mm Diameter -10 mm, • Size of plunger Height - 50 mm 33 to 35 mm from the top • Depth of 5 to 7 mm from the bottom. penetration The value of normal consistency is depends upon the \triangleright compound composition and fineness of cement. ≻ The water requirement for various test of cement depend on the normal consistency of the cement, so this test is perform before than other test of cement. Normal consistency of OPC is - 26 to 33% 3. Initial and Final Setting Time [IS: 4031 (Part-5), IS: 5513-1976]-SSC JE 2020-22, JSSC JE 2022, MH WRD JE 2022 **MPSC AE 2018, KPSC JE 2017** This test is perform into two parts-(a) Initial Setting Time (IST) Test-This test is perform by vicat apparatus with the help of needle. I.S.T. is the time elapsed between the moment that the water is added to the cement, to the time that paste starts losing its plasticity. • Quantity of water 0.85 P 400 gm • Weight of Cement sample 300 gm • Weight of movable rod • Diameter of needle 1 mm 33 to 35 mm Penetration of (from top of the mould) needle