$$
\begin{aligned}
v & =u+g t \\
h & =u t+\frac{1}{2} g t^{2} \\
v^{2} & =u^{2}+2 g h .
\end{aligned}
$$

Important: (i) When we throw a body vertically upward its velocity decreases and g is taken $-v e$.
(ii) For motion in vertical direction, time of ascent equals to time of descent.

Graphs:
In this unit there are mainly three types of graph.
(i) Distance - time graph
(ii) Velocity - time graph
(iii) Acceleration-time graph.
(a) Slope of position (distance, displacement) time graph gives us velocity.
(b) Slope of velocity-time graph gives us acceleration.
(c) Area bounded by velocity-time graph and time axis equals to displacement of the body.
(d) Area under acceleration-time graph gives change in velocity.

SOLVED EXAMPLES

BASED ON DISTANCE-DISPLACEMENT AVERAGE SPEED AND VELOCITY

Example 1. An object moves on a semicircular path, calculate the ratio of distance to displacement.

Solution: Let radius of circular path is r

$$
\begin{aligned}
\therefore \quad \frac{\text { distance }}{\text { displacement }} & =\frac{\pi r}{2 r}=\frac{\pi}{2} \\
& =\frac{3.14}{2}=\mathbf{1 . 5 7}
\end{aligned}
$$

Example 2. Two towns A and B are 100 km apart. A bus travels from A to to B at $40 \mathrm{kmh}^{-1}$ and returns from B to A at $50 \mathrm{kmh}^{-1}$. Calculate the average speed and average velocity of the bus.

Solution.

Time taken to go from A to $\mathrm{B}=\frac{100}{40}=\frac{5}{2} \mathrm{hr}$.
Time taken to come from B to $A=\frac{100}{50}=2 \mathrm{hr}$.

$$
\begin{aligned}
\therefore \quad \text { Average speed } & =\frac{100+100}{5 / 2+2}=\frac{200}{9 / 2}=\frac{400}{9}=\mathbf{4 4 . 4} \mathbf{k m h}^{-1} . \\
\text { Average velocity } & =\frac{\text { Total displacement }}{\text { Total time taken }} \\
& =\mathbf{0}
\end{aligned}
$$

