RRB MATHEMATICS Chapterwise Solved Papers

(Computer Based Test)

Chief Editor A.K. Mahajan

Complied & Written By Anand Soni, Kamlesh Shrivastava, Vinit Shrivastava,

Computer Graphics By Balkrishna Tripathi & Vinay Sahu

Editorial Office

12, Church Lane Prayagraj-211002

Email : yctap12@gmail.com website : www.yctbooks.com/ www.yctfastbooks.com © All Rights Reserved with Publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and printed by Laxmi Narayan Printing Press. In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

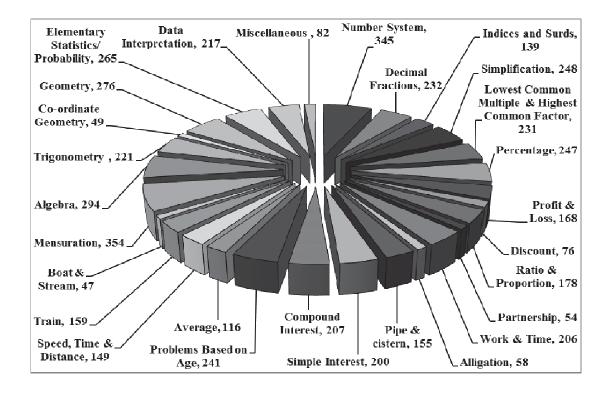
Rs. : 995/-

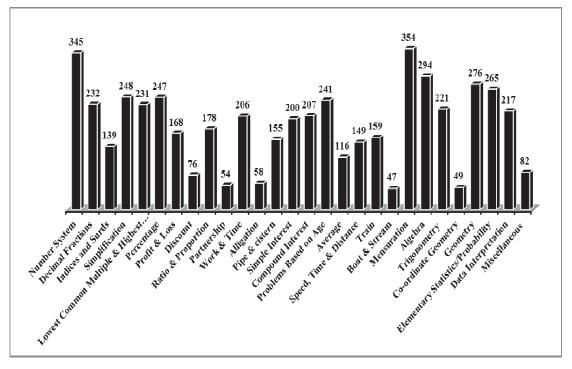
CONTENTS

	Analysis chart of RRB : JE, ALP, NTPC, Group-D, RPF SI &	
	Constable, Paramedical Pre Exam Questions Papers	7
	RRB : JE, ALP, NTPC, Group-D, RPF SI & Constable, Paramedical	
	Papers Through Pie Chart and Bar Graph	
Se	ction-1 : Number System	
	Type 1 Problems based on Divisibility	9
	Type 2 Problems based on specificity of digits	16
	Type 3 Problems based on composite and prime numbers	
	Type 4 Problems based on basic notion of numbers	21
	Type 5 Problems based on Rational and Irrational numbers	
	Type 6 Problems based on powers and exponents of numbers	41
	Type 7 Problems based on unit digit and factorization of numbers	43
	Type 8 Problems based on place value and numerical value	46
	Type 9 Miscellaneous	
Se	ction-2 : Decimal Fractions	51-85
	Type 1 Problems based on finding the smallest and largest fractions	
	Type 2 Problems based on ascending and descending order of fractions	
	Type 3 Problems based on Terminating and Recurring Decimal Values of Fractions	
	Type 4 Problems based on Bar of Decimal numbers	
	Type 5 Problems based on finding the simplest value of the fraction	
	Type 6 Problems based on the addition of a fraction and its reciprocal	
	Type 7 Problems based on the sum and difference of fractions	
	Type 8 Problems based on the value of decimal and fractional expressions	
	Type 9 Problems based on options	77
	Type 10 Problems based on finding the fraction	
	Type 11 Miscellaneous	
Se	ction-3 : Indices and Surds	86-103
	Type 1 Problems based on finding square root of numbers	
	Type 2 Problems based on finding the square root of decimal numbers	91
	Type 3 Problems based on sum and product of square root of numbers	92
	Type 4 Problems based on finding the square root of fractional numbers	96
	Type 5 Miscellaneous	
Se	ction-4 : Simplification	104-137
	Type 1 Simple problems related to addition, subtraction, multiplication and division	
	Type 2 Problems based on the rule of BODMAS	
	Type 3 Problems based on formulas and on finding the value of a term of an expression	
	Type 4 Problems based on simplification of decimal and fractional expressions	121
	Type 5 Simplification of numbers based on surds	
	Type 6 Miscellaneous	

Sec	tion-5	: Lowest Common Multiple & Highest Common Factor	138-168
· · ·	Type 1	Common problems related to LCM	
,	Type 2	Remainder problems related to LCM	140
_ ′	Type 3	Common problems related to HCF	144
		Remainder problems related to HCF	
_ ′	Type 5	Decimal and Fractional Problems related to LCM and HCF	151
		Combined problems of LCM and HCF	
,	Type 7	Problems based on Ratio, Sum, Difference and Factor of LCM and HCF	156
	• •	Problems related to square tiles	
	• •	Problems based on Alarm/Bell/Light etc	
		Divisibility problems based on LCM and HCF	
Sec	tion-6	: Percentage	169-204
,	Type 1	Problems based on Population	
		Problems based on Exam and Students	
		Problems based on Income, Expenditure and Savings	
,	Type 4	Problems based on Percentage of Numbers	
,	Type 5	Problems based on Percentage change	
,	Type 6	Problems based on investment and business	192
_ ′	Type 7	Problems related to finding percentage quantity	195
,	Type 8	Problems based on finding percentage	196
_ ′	Type 9	Problems based on percentage change in area	
– ′	Туре 10	Problems based on voting	
Sec	tion-7	' : Profit & Loss	205-233
,	Type 1	Problems based on finding the percentage of profit and loss	
		Problems based on finding the cost price	
,	Type 3	Problems based on finding the selling price	216
,	Type 4	Problems based on finding the amount of profit and loss	
,	Type 5	Problems based on finding the ratio of values	224
,	Type 6	Problems based on profit or loss of cost/sale of two articles	
_ ′	Type 7	Problems based on goods bought and sold at a particular rate	
,	Type 8	Miscellaneous	
Sec	tion-8	: Discount	234-245
C			
Sec	tion-9	: Ratio & Proportion	246-269
	• •	Problems based on ratio of two parts	
,	• •	Problems based on ratio of three parts	
	• •	Problems based on new ratio due to increase or decrease in original ratio	
	• •	Problems based on consecutive ratio and proportion	
		Problems based on Coins/balls etc	
′	Type 6	Miscellaneous	
Sec	tion-1	0 : Partnership	270-279
,	Type 1	Problems based on finding capital in partnership	
– ′	Type 2	Problems based on sharing of profits in partnership	
– ′	Type 3	Miscellaneous	

Section-1	1 : Work & Time	
Type 1	Problems based on the involvement of two persons in the work	
• •	Problems based on the involvement of three persons in the work	
Type 3	Problems based on the involvement of a group of persons in the work	
Type 4	Problems based on part of work and remaining work etc	
Type 5	Problems based on leaving and joining in the middle of the work	
• -	Problems based on work efficiency and wages etc	
Type 7		
Section-1	2 : Alligation	
Type 1	Problems based on the value and quantity of substances in a mixture	
Type 2	Problems based on finding ratio of substances in a mixture	
	Miscellaneous	
Section-1	3 : Pipe & Cistern	
Type 1	General Problems based on Pipe and Cistern	
• •	When one Pipe is fills and the other Pipe is empties	
Type 3	When more than two Pipes work together	
Type 4	When a Pipe is turned on or off in the middle	
Type 5	When the Pipe is opened alternately	
• •	Problems based on capacity	
	Miscellaneous	
Section-1	4 : Simple Interest	
Type 1	Problems based on finding simple interest	
Type 2	Problems based on finding the Principal	
Type 3	Problems based on finding the amount	
Type 4	Problems based on finding the rate	
• •	Problems based on finding the time	
Type 6	Miscellaneous	
Section-1	5 : Compound Interest	
Type 1	Problems based on finding the Principal	
Type 2	Problems based on finding the Amount	
Type 3	Problems based on finding the Compound Interest	
Type 4	Problems based on Simple and Compound Interest	
Type 5	Problems based on the difference between simple and compound interest	
	0	
• 1	Problems based on finding the time	
Type 8	Miscellaneous	
Section-1	6 : Problems Based on Age	
Type 1	Problems based on finding the present age of a person	
Type 2	Problems based on finding the age of two persons	
Type 3	Problems based on finding the sum and difference of ages	
Type 4	Problems based on ratio of ages	
• •	Problems based on finding the age at a particular time	
Type 6	Miscellaneous	


	17 : Average	
Type 1	Problems based on the average of consecutive numbers	
Type 2		
	Problems based on average age and average weight	
• •	Problems based on finding the value of any one result	
• •	Average problems based on table	
• •	Miscellaneous	
Section-	18 : Speed, Time & Distance	499-527
Type 1	81	
	Problems based on finding time	
• •	Problems based on finding distance	
• •	Problems based on Average speed	
• •	Proportional questions of speed, time and distance	
Section-	19 : Train	528-552
Type 1	Simple problems related to train	
Type 2	When the train crosses a person or a pole	530
Type 3		
Type 4	1 0	
Type 5		
Type 6	8	
Type 7		
 Type 8 Type 0 	Problems based on average speed of trains Miscellaneous	
• • •		
Section-	20 : Boat & Stream	
Type 1	8 1	553
Type 2	Problems based on finding the speed of boat/person etc	553 556
 Type 2 Type 3 	Problems based on finding the speed of boat/person etc Problems based on finding the average speed	
 Type 2 Type 3 Type 4 	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds	
 Type 2 Type 3 Type 4 Type 5 	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time	
 Type 2 Type 3 Type 4 Type 5 Section-2 	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time	
 Type 2 Type 3 Type 4 Type 5 Section - 2 Type 1 	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time 21 : Mensuration Problems based on Triangles	
Type 2 Type 3 Type 3 Type 4 Type 5 Section- Type 1 Type 2	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time 21 : Mensuration Problems based on Triangles Problems based on Quadrilateral	
Type 2 Type 3 Type 3 Type 4 Type 5 Section-1 Type 1 Type 2 Type 3	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time 21 : Mensuration Problems based on Triangles Problems based on Quadrilateral Problems based on Circle	
Type 2 Type 3 Type 4 Type 5 Section- Type 1 Type 2 Type 3 Type 4	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time 21 : Mensuration Problems based on Triangles Problems based on Quadrilateral Problems based on Circle Problems based on Square	
Type 2 Type 3 Type 4 Type 5 Section= Type 1 Type 2 Type 3 Type 4 Type 5	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time 21 : Mensuration Problems based on Triangles Problems based on Quadrilateral Problems based on Circle Problems based on Square Problems based on Rectangle	
Type 2 Type 3 Type 4 Type 5 Section-1 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time 21 : Mensuration Problems based on Triangles Problems based on Quadrilateral Problems based on Square Problems based on Rectangle Problems based on Cube	553 556 558 559 560 562 562 562 571 574 574 582 590 601
Type 2 Type 3 Type 4 Type 5 Section-1 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time 21 : Mensuration Problems based on Triangles Problems based on Quadrilateral Problems based on Circle Problems based on Square Problems based on Rectangle Problems based on Cube Problems based on Cube	553 556 558 559 560 562-640 562-640 562 571 574 574 582 590 601 604
Type 2 Type 3 Type 4 Type 5 Section-1 Type 1 Type 2 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time 21 : Mensuration Problems based on Triangles Problems based on Quadrilateral Problems based on Circle Problems based on Square Problems based on Rectangle Problems based on Cube Problems based on Cube Problems based on Cube	553 556 558 559 560 562-640 562-640 562 571 574 574 582 590 601 604 608
Type 2 Type 3 Type 4 Type 5 Section - 2 Type 1 Type 2 Type 3 Type 4 Type 5 Type 5 Type 6 Type 7 Type 8 Type 9	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time 21 : Mensuration Problems based on Triangles Problems based on Quadrilateral Problems based on Circle Problems based on Square Problems based on Rectangle Problems based on Cube Problems based on Cube Problems based on Cubeid Problems based on Cylinder Problems based on Cone	553 556 558 559 560 562-640 562-640 562 571 574 582 574 582 590 601 604 604 608 615
Type 2 Type 3 Type 4 Type 5 Section-1 Type 1 Type 2 Type 3 Type 4 Type 5 Type 5 Type 6 Type 7 Type 8 Type 9 Type 1	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time 21 : Mensuration Problems based on Triangles Problems based on Quadrilateral Problems based on Circle Problems based on Square Problems based on Rectangle Problems based on Cube Problems based on Cube Problems based on Cube	553 556 558 559 560 562-640 562-640 562 571 574 582 590 601 604 608 615 620
Type 2 Type 3 Type 3 Type 4 Type 5 Section-1 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 6 Type 7 Type 8 Type 9 Type 1	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time	553 556 558 559 560 562-640 562-640 562 571 574 574 582 590 601 604 604 608 615 620 626
Type 2 Type 3 Type 4 Type 5 Section-2 Type 1 Type 2 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 7 Type 8 Type 9 Type 1 Type 1	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time	553 556 558 559 560 562-640 562-640 562 571 574 582 590 601 604 604 608 615 620 626 627
Type 2 Type 3 Type 4 Type 5 Section-2 Type 1 Type 2 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 7 Type 8 Type 9 Type 1 Type 1	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time	553 556 558 559 560 562-640 562-640 562 571 574 574 582 590 601 601 604 608 615 620 626 627 641-689
Type 2 Type 3 Type 3 Type 4 Type 5 Section- Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 7 Type 8 Type 9 Type 1 Type 1 Section-	Problems based on finding the speed of boat/person etc	553 556 558 559 560 562-640 562-640 562 571 574 582 590 601 604 604 608 615 620 626 627 627 641-689
Type 2 Type 3 Type 3 Type 4 Type 5 Section- Type 1 Type 2 Type 2 Type 3 Type 4 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9 Type 1 Type 1 Section-	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time	553 556 558 559 560 562-640 562-640 562 571 574 582 590 601 604 608 615 620 626 627 641-689 641 641
Type 2 Type 3 Type 3 Type 4 Type 5 Section-1 Type 1 Type 2 Type 3 Type 3 Type 4 Type 5 Type 6 Type 7 Type 6 Type 7 Type 8 Type 9 Type 1 Type 1 Section-1 Type 1 Type 2 Type 3	Problems based on finding the speed of boat/person etc Problems based on finding the average speed Problems based on finding the ratio of the speeds Problems based on finding the distance and time	553 556 558 559 560 562-640 562-640 562 571 574 582 590 601 604 608 615 620 626 627 641-689 641 648


Type 5 Problems based on Divisibility of Polynomials	
Type 6 Problems based on Factors of Polynomials	666
Type 7 Problems based on Quadratic Equation and its Discriminant	668
Type 8 Problems based on Algebraic Expressions	
Type 9 Problems based on Sets	684
Type 10 Miscellaneous	
Section-23 : Trigonometry	690-734
■ Type 1 Problems based on Trigonometric Functions	690
Type 2 Problems based on exponents of trigonometric functions	704
Type 3 Problems based on Angular value	711
Type 4 Problems based on angular values of consecutive trigonometric functions	
Type 5 Problems based on height and Distance	720
Type 6 Miscellaneous	
Section-24 : Co-ordinate Geometry	
■ Type 1 Problems based on finding the coordinate point	735
Type 2 Problems based on part made up of Dots	738
Type 3 Problems based on finding the Equation	741
Type 4 Miscellaneous	743
Section-25 : Geometry	
Type 1 Problems based on Triangles	
■ Type 2 Problems based on Quardrilateral	
Type 3 Problems based on Rhombus	762
Type 4 Problems based on Parallelogram	766
Type 5 Problems based on Trapezium	769
Type 6 Problems based on Circle	770
Type 7 Problems based on tangent to circle	777
Type 8 Problems based on Polygons	
Type 9 Problems based on Complementary/Supplementary Angle)	
Type 10 Miscellaneous	
Section-26 : Elementary Statistics/Probability	
Type 1 Problems based on Mean of Data	
Type 2 Problems based on Median of Data	808
Type 3 Problems based on Mode of Data	816
Type 4 Problems based on Standard Deviation	819
Type 5 Problems based on Range	821
Type 6 Miscellaneous	
Section-27 : Data Interpretation	
Type 1 Problems based on Pie-Chart	
Type 2 Problems based on Chart	
Type 3 Problems based on Bar Graph	
Type 4 Problems based on Line Graph	
Section-28 : Miscellaneous	

Analysis chart of Question Papers of Various Previous Exams of RRB				
S.N.	Exams	Exam year	Total question paper	Total Maths questions
1.	RRB NTPC 2019 Stage-2	2022	15	35 × 15 = 525
2.	RRB Group-D 2019	2022	99	$25 \times 99 = 2475$
3.	RRB NTPC 2019 Stage-1	2020-21	133	30 × 133 = 3990
4.	RPF Constable 2018	2019	17	35 × 17 = 595
5.	RPF SI 2018	2019	23	$35 \times 23 = 805$
6.	RRB JE 2018	2019	38	$38 \times 30 = 1140$
7.	RRB ALP 2018 Stage-2	2019	18	$18 \times 40 = 720$
8.	RRB Paramedical 2019	2019	7	$18 \times 7 = 126$
9.	RRB ALP/Tech. 2018 Stage-1	2018	30	$25 \times 30 = 750$
10.	RRB Group D 2018	2018	135	25 × 135 = 3375
11.	RRB NTPC 2015 Stage-2	2017	9	$35 \times 9 = 315$
12.	RRB NTPC 2015 Stage-1	2016	63	$30 \times 63 = 1890$
		Total	587	16,706

<u>Note</u>- In this book, out of total **587** papers of JE, ALP, NTPC, RPF Constable, RPF SI, Group D and Paramedical exams conducted by RRB, out of total **16706** questions asked from General Mathematics. Same behavior have been removed and chapterwise compilation of questions of different types has been presented. In this book, every effort has been made by the Examination Special Committee to accommodate maximum variety of questions, so that the examinees can be made aware of the variety of questions asked by RRB.

<u>Trend Analysis of Previous Year RRB : JE, ALP, NTPC,</u> <u>Group-D, RPF SI & Constable, Paramedical Papers</u> <u>Through Pie Chart and Bar Graph</u>

8

Type - 1	(c) 35 <u>412</u>
rypc - r	$\frac{412}{8}$ = 51.5 (Not completely divisible)
4 XX71 · 1 · 0 / 0 · 1 · 1 · 1 · 1 · 1 · 1 · 1	
1. Which of the following numbers is divisible	(d) 35 <u>552</u>
completely by both 9 and 11 ?	
(a) 277218 (b) 10098	$\frac{552}{8} = 69$ (Completely divisible)
(c) 12345 (d) 181998	0
RRB NTPC (Stage-II) 17/06/2022 (Shift-II)	Hence, option (c) is not divisible by 8.
Ans. (b) : Divisibility rule of 9 -	4. If the 7 digit number 504x5y3 is divisible by 11,
When the sum of the digits of a number is divisible by 9	then one of the values of the sum of x and y is:
then the number is also divisible by 9.	(a) 11 (b) 5
Divisibility rule of 11 -	(c) 17 (d) 7
When the difference between the sum of the digit in	RRB NTPC (Stage-II) –13/06/2022 (Shift-II)
even and odd place of a number is 0 (zero) or a multiple	Ans. (c) : Given, 504x5y3
of 11, then the number will also be divisible by 11.	Divisibility rule of 11:- If the difference of the sum of
From option (b),	digits at even place and at odd place is zero or divisible
1 + 0 + 0 + 9 + 8 = 18	by 11 then the given number will be divisible by 11.
i.e. 18 is divisible by 9	504x5y3
\therefore Option (d) us divisible by 9.	(0 + x + y) - (5 + 4 + 5 + 3)
And	x + y - 17 = 0
10098 = (9 + 0) - (8 + 0 + 1) = 9 - 9 = 0	x + y = 17
Hence option (b) 10098, is divisible by both 9 and 11.	Hence, Sum of $x + y = 17$
2. Which of the following numbers is NOT	5. If 11-digit number 88p554085k6, $k \neq p$, is
divisible by 9 ?	divisible by 72, then what is the value of $(3k + 1)$
(a) 49104 (b) 77832	2p)?
(c) 35253 (d) 45390	(a) 12 (b) 7
RRB NTPC (Stage-II) –12/06/2022 (Shift-II)	(c) 13 (d) 23
Ans. (d) : Divisibility rule of 9 : A number whose sum	RRB NTPC (Stage-II) -13/06/2022 (Shift-II)
of its digit is exactly divisible by 9 then the number is	Ans. (c) : Given,
always divisible by 9.	88p554085k6 Where, $k \neq p$
from options -	Note- The number which is divisible by 72 is also
(a) $49104 \rightarrow 4 + 9 + 1 + 0 + 4 = 18$, divisible by 9.	divisible by 8 and 9.
(b) $77832 \rightarrow 7 + 7 + 8 + 3 + 2 = 27$, divisible by 9.	Divisibility rule of 8 – If the last three digit of the
(c) $35253 \rightarrow 3 + 5 + 2 + 5 + 3 = 18$, divisible by 9.	number are divisible by 8, then the number will be
	divisible by 8.
(d) $45390 \rightarrow 4 + 5 + 3 + 9 + 0 = 21$, not divisible by 9.	Divisibility rule of 9– If the sum of the all digits of a
3. Which of the following number is NOT	given number is divisible by 9, then number will be
divisible by 8?	divisible by 9.
(a) 35792 (b) 35112 (c) 25412	▶8
(c) 35412 (d) 35552	72/
RRB NTPC (Stage-II) 15/06/2022 (Shift-III)	/2
Ans. (c) : Divisibility rule of 8- If the last three digits of	
a number are divisible by 8, then the number is	>9
completely divisible by 8.	88p554085k6
from the given options -	On putting, $k = 3$
(a) 35 <u>792</u>	
$\frac{792}{8} = 99$ (Completely divisible)	$\frac{536}{8} = 67$ (Completely divisible by 8)
8	0
(b) 35 <u>112</u>	and On putting $p = 2$
112 14 (Completel 15 5 11)	$\frac{8+8+2+5+5+4+0+8+5+3+6}{2}$
$\frac{112}{8} = 14$ (Completely divisible)	9
С	

Ans. (b) : Divisibility rule of 9 - If the sum of the digits $=\frac{54}{9}=6$ (Completively divisible) are divisible by 9, then the number is divisible by 9. Number - 4a5124356789734 Then. (3k + 2p)On divided by 9 - $= 3 \times 3 + 2 \times 2$ $\frac{4+a+5+1+2+4+3+5+6+7+8+9+7+3+4}{9} = \frac{a+68}{9} \implies \text{On putting } a = 4 \implies \frac{4+68}{9} = \frac{72}{9} = 8$ = 13Find the remainder, when $171 \times 172 \times 173$ is 6. divided by 17. (a) 9 (b) 8Hence the value of a = 4(c) 6 (d) 7 10. If the 8 digit number 3x5479y4 is divisible by RRB Group-D 29/08/2022 (Shift-III) 88 and the 8 digit number 425139z2 is divisible Ans. (c) : According to the question, by 9, then find the maximum possible value of 171×172×173 (3x + 2y - z).17 (b) 37 (a) 33 (c) 25 (d) 35 $(170+1) \times (170+2)(170+3)$ RRB Group-D 09/09/2022 (Shift-III) Ans. (a) : On dividing 3x5479y4 by 88 ie. 8 and 11 $1 \times 2 \times 3$ Divisibility rule of 8 - If the last three digits of the given 17 number are divisible by 8, then it will be divisible by 8. Maximum possible value = 817 $\frac{984}{8} = 123$ 6 (Remainder) \rightarrow Hence option (c) is correct. Divisibility rule of 11 - The given number can only be completely divided by 11 if the difference of the sum of 7. When a number is divided by a divisor, the digits at odd place and sum of digits at even place in a remainder is 16. When twice the original number is divided by the same divisor, the number is 0 or mutiple of 11. remainder is 3. Find the value of that divisor $3x547984 \implies (4+9+4+x) \sim (8+7+5+3)$ (a) 29 (b) 51 $17 + x \sim 23 = 0$ (c) 23 (d) 53 x = 6RRB Group-D 30/08/2022 (Shift-II) On dividing 425139z2 by 9 Ans. (a) : Let, the original number be N, the divisor be Divisibility rule of 9 :- If the sum of the digits of a d, quotient be q. number are divisible by 9, then the number is divisible N = dq + 16bv 9. $\frac{4+2+5+1+3+9+z+2}{9} = \frac{26+z}{9}$ On putting z = 1 $\therefore 2 \text{ N} = 2(\text{dq} + 16)$ 2 N = 2dq + 32When (2dq + 32) is divided d then remainder is 3. 2dq is completely divisible by d, then $\frac{26+1}{9} = \frac{27}{9} = 3$ \therefore Required number = 32 - 3 = 29If the number 6484y6 is divisible by 8, then find 8. Hence, the least value of y? $3x + 2y - z = 3 \times 6 + 2 \times 8 - 1 = 33$ (a) 3 (b) 4 When a number n is divided by 5, the remainder is 2. When n^2 is divided by 5, the 11. (c) 1 (d) 7 **RRB Group-D 02/09/2022 (Shift-II)** remainder will be: Ans. (c) : Divisibility rule of 8 - If the last three digits (a) 3 (b) 1 of the given number are divisible by 8 then it will be (c) 4 (d) 0 divisible by 8. RRB NTPC 07.01.2021 (Shift-I) Stage Ist On putting Least value of y = 1**Ans. (c) :** Number = Divisor × Quotient + Remainder Number = 648416 According to question, $n = 5 \times q + 2$ Divided by = $\frac{416}{8}$ = 52 On squaring both the sides, $n^2 = 25q^2 + 4 + 20q$ 9. If the 15 digit number 4a5124356789734 is On dividing by 5 – divisible by 9, then the value of "a" is $\frac{n^2}{5} = 5q^2 + \frac{4}{5} + 4q \text{ or } n^2 = 5(5q^2 + 4q) + 4$ (a) 1 (b) 4 (c) 5 (d) 3 Hence, required remainder will be 4. RRB GROUP-D – 22/09/2022 (Shift-III)

Number System

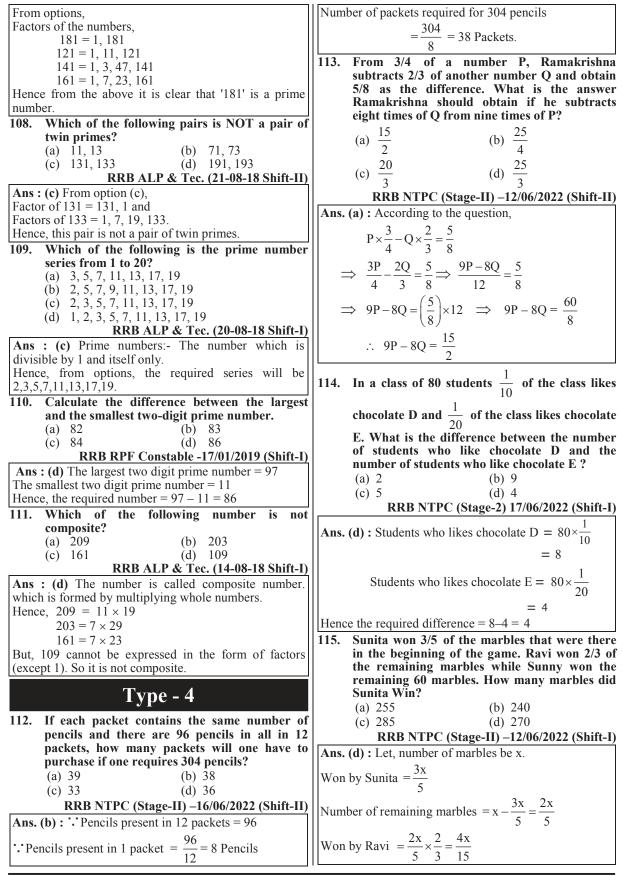
12. How many numbers of the first 100 positive Ans. (d) : Divisibility rule of 11-In a given number if integers are divisible by 3 or 4 without a the difference of sum of all digit even place and placed remainder? at odd place is zero or multiple of 11, then that number (a) 50 (b) 5 will also be divisible by 11. (9+2+8+6)-(3+4+x)25-(7+x) = 11(c) 58 (d) 85 RRB NTPC 08.02.2021 (Shift-II) Stage Ist 18 - x = 11Ans. (a) : Total number of positive integers which is x = 18 - 11divisible by $3 = \frac{100}{3} = 33$ Hence, x = 7 $(41^{43} + 43^{43})$ is divisible by: 17. Total number of positive integers which is divisible by (a) 86 (b) 74 (d) 84 (c) 12 $4 = \frac{100}{4} = 25$ RRB NTPC 25.01.2021 (Shift-II) Stage Ist Ans. (d): $(x^n + a^n)$ is divisible by (x + a), if the value Total number of positive integers which is divisible by of n is odd : 43 is a odd number, therefore $(41^{43} + 43^{43})$ will be $12 = \frac{100}{2} = 8$ divisible by 41 + 43 = 84Hence, the total number of positive integers which is 18. If pq is a two-digit number, then pq – qp will divisible by 3 or 4. be completely divisible by: =(33+25-8)(b) 7 (a) 9 = 50 (c) 6 (d) 5 How many numbers between 1 and 700 are RRB NTPC 07.04.2021 (Shift-II) Stage Ist 13. Ans. (a) : Let the two digit number (pq) = 10x + ycompletely divisible by 17? (a) 42 (b) 41 Then, qp = 10y + x(c) 45 (d) 46 According to the question, RRB NTPC 29.01.2021 (Shift-II) Stage Ist pq – qp Ans. (b) : Numbers between 1 and 700 which are = 10x + y - (10y + x)= 10x + y - 10y - xexactly divisible by 17. 17, 34697. =9x-9y $l = a + (n-1) \times d$ = 9 (x - y) $697 = 17 + (n-1) \times 17$ Hence pq – qp will be completely divisible by 9. $680 = (n-1) \times 17$ If n is a natural number then n³-n is always 19. 40 = n - 1divisible by..... n = 41 (a) 8 (b) 6 Hence, required number (n) = 41(c) 5 (d) 4 When 19³⁰⁰ is divided by 20, RRB NTPC 05.04.2021 (Shift-II) Stage Ist 14. find the remainder. Ans. (b): \therefore n is a natural number. (a) 2 (b) 1 $\therefore n^3 - n = n(n^2 - 1) = n(n+1)(n-1)$ (c) 3 (d) 4 n(n+1) (n-1) {Multiplication of three consecutive RRB NTPC 29.01.2021 (Shift-II) Stage Ist natural numbers} Ans. (b) : From question, On putting the value of n = 2 $\Rightarrow \frac{(20-1)^{300}}{20} \Rightarrow 0 + (-1)^{300} = 1$ (Remainder) $n^{3} - n = n (n + 1) (n - 1) = 2 \times 3 \times 1 = 6$ 19^{300} Hence, it will always divisible by 6. 20 Note- The multiplication of three consecutive natural Which of the following is the greatest three 15. numbers will be always divisible by 6. digit number that is divisible by 13? A number when divided by 7 leaves a 20 (b) 575 (d) 908 (a) 990 remainder 4. What will be the remainder when (c) 988 the square of the same number is divided by 7? RRB NTPC 18.01.2021 (Shift-II) Stage Ist (a) 2 (b) 4 Ans. (c) : Greatest three digit number = 999 (c) 1 (d) 3 On dividing by $13 = \frac{999}{13} = 76\frac{11}{13}$ RRB NTPC 29.01.2021 (Shift-I) Stage Ist Ans. (a) : Let, Quotient = n : 999 divided by 13 leaves remainder 11. \therefore The greatest three digit number divisible by 13 = 999Number = $Divisor \times Quotient + Remainder$ $-11 = \bar{988}$ Number = $7 \times n + 4$ (Given, Remainder = 4) The number 93248x6 are divisible by 11. Then 16. On putting n = 1, digit x is equal to. Number = $7 \times 1 + 4 = 11$ (a) 5 (b) 2 On dividing the number by 7, (c) 8 (d) 7 Remainder = 4RRB NTPC 03.02.2021 (Shift-I) Stage Ist

Hence, on dividing the square of 11 by 7	25. In between 250–1000, how many numbers are completely divisible by 5, 6 & 7.
Remainder $=\frac{(11)^2}{7} = \frac{121}{7} = 2$	(a) 5 (b) 7
	(c) 6 (d) 3
21. The smallest positive number which must be	RRB NTPC 29.12.2020 (Shift-II) Stage Ist
added to the greatest number of 4 digits in order that the sum may be exactly divisible by	Ans. (d) : LCM of 5, 6, 7 –
307 is:	2 5,6,7
(a) 307 (b) 132 (c) 306 (d) 176	3 5,3,7
RRB NTPC 17.01.2021 (Shift-II) Stage Ist	5 5,1,7
Ans. (b) : The greatest number of 4 digits = 9999	$\frac{7}{7}$ 1,1,7
307)9999(32	
-921	1,1,1
789	$2 \times 3 \times 5 \times 7 = 210$ Numbers from 250 to 1000 which are divisible by 5,
	6, 7 will be always divisible by 210 or in multiples of
<u>614</u>	210.
175	Therefore, the numbers are 210×1 , 210×2 , 210×3 ,
Hence, the smallest number to be added = $307-175$ = 132	$210 \times 4, 210 \times 5$
	210, 420, 630, 840,
22. How many numbers from 3 to 60 are odd numbers that are exactly divisible by 5?	Hence, the required numbers = 3
(a) 7 (b) 5 (c) 8 (d) 6	26. The largest four-digit number that is exactly divisible by 83 is:
RRB NTPC 09.01.2021 (Shift-I) Stage Ist Ans. (d) : Odd numbers between 3 to 60 which	(a) 9936 (b) 9954
divisible by 5.	(c) 9960 (d) 9966
5, 15, 25, 35, 45, 55	RRB NTPC 20.01.2021 (Shift-I) Stage Ist
So total number of odd numbers from 3 to 60 which are	Ans. (c) : The largest four-digit number = 9999
exactly divisible by $5 = 6$.	83)9999(12
23. How many numbers between 300 and 1000 are	83
divisible by 7? (a) 994 (b) 301 (c) 101 (d) 100	—
(a) 994 (b) 301 (c) 101 (d) 100 RRB NTPC 09.01.2021 (Shift-I) Stage Ist	169
Ans. (d) : Total number of numbers between 1 and	166
1000 which are divisible by 7	39
$=\frac{1000}{7}=142$	Therefore required number $= 9999 - 39 = 9960$
$=\frac{1}{7}=142$	Hence, 9960 is the largest four-digit number which is
Total number of numbers between 1 and 300 which are divisible by 7	exactly divisible by 83.
-	27. $(47)^{25} - 1$ is exactly divisible by: (a) 21 (b) 24
$=\frac{300}{7}=42$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Hence, Total number of numbers between 1 and 300	RRB NTPC 18.01.2021 (Shift-I) Stage Ist
which are divisible by 7 between 300 and 1000	Ans. (c) : $(47)^{25} - 1$
= 142 - 42 = 100	
24. Find the greatest number of five digits, which is	$a^n - b^n$ is completely divisible by $(a - b)$
exactly divisible by 468. (a) 99684 (b) 99486	When $n = odd$ numbers, As per the question
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n = 25(Odd number)
RRB NTPC 04.01.2021 (Shift-II) Stage Ist	a = 47, b = 1
Ans. (a) : The greatest number of five digits = 99999	Then, $a = 47, b = 1$
468)99999(213	$a - b = 47 - 1 = 46 = 2 \times 23$
936	Hence, $47^{25} - 1$ is divisible by 23.
639	28. If 111 1 (n digits) is divisible by 9, then the
468	least value of n is:
1719	(a) 18 (b) 12
	(c) 3 (d) 9
1404	RRB NTPC 18.01.2021 (Shift-I) Stage Ist
315	Ans. (d) : When the sum of all the digits of a number is
Required number $= 99999 - 315 = 99684$	divisible by 9, then number will be divisible by 9.

Given number-	71
	$=3^{71} \times 121$
• 1111 (n digits)	$=3^{71} \times 11^2$
• When $n = 1$, number is 1, which is not divisible by 9.	Hence, given series will be divisible by 11.
• When $n = 2$, number is 11, which is a prime number	33. The smallest 5 digit number that leaves a
and thus not divisible by 9. When $n = 2$, number is 111 and 1+1+1=2, which is	remainder of 6 when divided by 7 is :
• When $n = 3$, number is 111 and $1+1+1=3$, which is	(a) 10009 (b) 10002
not divisible by 9.	(c) 10003 (d) 10007
	RRB NTPC 28.12.2020 (Shift-I) Stage Ist
	Ans. (b) : Smallest number of 5 digits =10000
	10000]
• When $n = 9$, number is 111111111 and $1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+$	
1+1+1=9, which is divisible by 9	7 $\Box_{\text{Remainder}=4}$
Hence, the least possible value of n is 9.	Required number = $10000 + (6 - 4) = 10002$
29. A number when divided by 280 leaves 73 as the	34. N is a whole number which when, divided by 6
remainder. When the same number is divided by 35, the remainder will be:	leaves the remainder 4. Find the remainder
(a) 4 (b) 2	when 2N is divided by 6.
(c) $\frac{1}{3}$ (d) $\frac{7}{7}$	(a) 4 (b) 8
RRB NTPC 16.01.2021 (Shift-I) Stage Ist	(c) 2 (d) Zero
Ans. (c) : Let number = N	RRB NTPC 28.04.2016 Shift : 1
N = 280K + 73	Ans : (c) Let the quotient be "a" when N is divided by 6.
$= (35 \times 8) \text{ K} + 70 + 3$	$\therefore N = 6a + 4(i)$
= 35 (8K + 2) + 3	By equation (i) $\times 2$,
N = 35m + 3(i) (where, $m = 8 K + 2$)	$2N = 2 \times 6a + 8$ 2N = 12a + 6 + 2
or $N = 35q + r$ (ii)	2N = 12a + 6 + 2 2N = 6(2a + 1) + 2
On comparing both equation,	Hence, the required remainder will be 2.
r = 3	35. Find the largest number of four digit that is
Hence, on dividing the same numbers by 35 the remainder will be 3.	completely divisible by 49.
	(a) 9998 (b) 9994
30. The least number that is divisible by all the	(c) 9992 (d) 9996
numbers from 2 to 10 is - (a) 2520 (b) 100	RRB RPF-SI -10/01/2019 (Shift-II)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RRB Group-D – 18/09/2018 (Shift-II)
RRB NTPC 10.01.2021 (Shift-I) Stage Ist	Ans : (d) The largest 4-digit number is 9999.
Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7,	49)9999(204
8, 9, 10	98
$= 2, 3, (2 \times 2), 5, (2 \times 3), 7, (2 \times 2 \times 2), (3 \times 3) \times (2 \times 5)$	—
$= 2 \times 2 \times 2 \times 3 \times 5 \times 7 = 2520$	199
	196
31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves	3
(a) 9 (b) 29	Hence, the required number = $9999-3 = 9996$, which is
(a) $y = (0) 2y$ (c) 27 (d) 11	exactly divisible by 49.
RRB NTPC 10.01.2021 (Shift-I) Stage Ist	36. What should be added to 135642 to get the
Ans. (a) : Prime number-The numbers which is only	largest six digit number?
divisible by 1 and itself are known as prime number.	(a) 864350 (b) 863357
The prime numbers greater than 2 and less than 30 are-	(c) 864357 (d) 864347
= 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers	RRB Group-D – 29/10/2018 (Shift-III)
Hence, the required number = 9	Ans: (c) Let the required number is x.
	Adding x to 135642 to get a largest six digit number
	$\therefore 135642 + x = 999999$
(a) 8 (b) 5 (c) 11 (d) 7	x = 999999 - 135642 x = 864257
RRB NTPC 08.01.2021 (Shift-II) Stage Ist	x = 864357
	37. Find the smallest four digit number that is
Ans. (c) : $3^{71} + 3^{72} + 3^{73} + 3^{74} + 3^{75}$	divisible by 47.
$= 3^{71} \left(3^0 + 3^1 + 3^2 + 3^3 + 3^4 \right)$	(a) 1200 (b) 1025
$= 3^{71} (1 + 3 + 9 + 27 + 81)$	(c) 1034 (d) 1360
$= 3(+1) \pm 3 \pm 9 \pm 27 \pm 81$	
= 5 (1+5+5+27+61)	RRB Group-D – 22/09/2018 (Shift-III)

Ans. (c) : The smallest four digit number = 1000	41. Which of the following numbers is not divisible
21	by 8?
47)1000	(a) 12676 (b) 11504 (c) 12832 (d) 12360
94	RB RPF Constable -24/01/2019 (Shift-II)
60	Ans : (a) From options,
47	12676 1584 5
13	(a) $\frac{12070}{8} = 1584.5$
Hence, the smallest four digit number divisible by 47,	11504 1420
$= 1000 + (47 - 13) \ 1000 + 34 = 1034$	(b) $\frac{11504}{8} = 1438$
38. Find the least 6 digit number that is a multiple	10000
of 18. (a) 100000 (b) 999900	(c) $\frac{12832}{8} = 1604$
(a) 100000 (b) 999900 (c) 100008 (d) 100006	
RRB NTPC 29.04.2016 Shift : 1	(d) $\frac{12360}{8} = 1545$
Ans : (c) The smallest 6 digit number = 100000	Hence, the number 12676 is not divisible by 8.
5555	42. 276x1, is divisible by 3. What is the sum of the
18)100000	possible values of x?
90	(a) 18 (b) 21 (d) 15
100	(c) 12 (d) 15 RRB RPF SI-12/01/2019 (Shift-I)
90	Ans. (d) If the sum of all digits of a number is divisible
100	by 3, then the number will be divisible by 3.
90	276x1, is divisible by 3.
$\overline{100}$	2+7+6+x+1=16+x The number will be completely divisible by 3, by
90	putting the possible values of x as 2, 8, and 5.
$\overline{10}$	Hence, the sum of the possible values of $x = 2+8+5=15$
The remainder is 10, hence $18 - 10 = 8$ is added to the	43. By dividing 14528 by a certain number, Suresh
number will make it completely divisible. Hence, the required number = $100000 + 8 = 100008$	gets 83 as quotient and 3 as remainder. What is
39. A student divided a number by 12 instead of 21	the divisor? (a) 165 (b) 185 (c) 195 (d) 175
and received 35. Find the correct answer.	RRB RPF SI -06/01/2019 (Shift-III)
(a) 20 (b) 15 (c) 26 (d) 25	Ans : (d) Let the divisor is 'x'.
RRB JE - 26/05/2019 (Shift-II) Ans : (a) Let the number be x.	Given- Dividend = 14528
According to the question,	Quotient = 83 Remainder = 3
On dividing by 12,	$\frac{\text{Remainder} - 5}{\text{Dividend}} = (\text{Divisor} \times \text{Quotient} + \text{Remainder})$
$\frac{x}{x} = 35$	$\Rightarrow 14528 = (x \times 83) + 3$
12	$\Rightarrow 83x = 14528 - 3$
$\begin{array}{l} x = 35 \times 12 \\ x = 420 \end{array}$	$\Rightarrow 83x = 14525$
The number is 420	$\Rightarrow x = \frac{14525}{83} \Rightarrow x = 175$
Dividing 420 by 21-	$\rightarrow x - \frac{1}{83} \rightarrow x - \frac{1}{175}$
$\frac{420}{21} = 20$	44. If the number x4461 is divisible by 11, find the
21	value of x. (a) 2 (b) 4 (c) 2 (d) 5
Hence, the correct answer = 20 40. Find the least number to be added to 231228 to	(a) 2 (b) 4 (c) 3 (d) 5 RRB Group-D – 17/09/2018 (Shift-I)
make it exactly divisible by 33.	Ans: (d) Rule of divisibility by 11-
(a) 3 (b) 4 (c) 2 (d) 1	If the difference between sum of digits at even places
RRB JE - 27/05/2019 (Shift-III)	and the sum of digits at odd places of a number is 0 or
Ans : (a) From question,	is divisible by 11, then that number will also be
7006	divisible by 11. The number – x 4 4 6 1
33)231228	x + 4 + 1 - (4 + 6) = 0
231	x + 5 - 10 = 0
$\times \times \times 228$	x = 5
<u>198</u>	45. Which number is divisible by 9? (a) 56112 (b) 89445
<u>30</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Hence, the required number $= 33 - 30 = 3$	RRB Group-D – 03/10/2018 (Shift-II)

Ans : (c) If the sum of all the digits of a number is	49. Find the least number to be added to 1739 so
divisible by 9, the number will also be completely	that it is exactly divisible by 11.
divisible by 9.	(a) 11 (b) 2
Hence, from options-	(c) 1 (d) 10
(a) The sum of the digits of $56112 = 15 (\times)$	RRB NTPC 30.03.2016 Shift : 1
(b) The sum of the digits of $89445 = 30$ (×)	Ans : (d) To get the required number divide 1739 by 11
(c) The sum of the digits of $49653 = 27 (\sqrt{)}$	then subtract the remainder from the divisor.
(d) The sum of the digits of $58556 = 29$ (×)	
Hence, the number divisible by $9 = 49653$	158
46. Which of the following numbers is divisible by 6?	11)1739
(a) 12378 (b) 12363	11
(c) 12370 (d) 12388	
RRB Group-D – 05/12/2018 (Shift-I)	×63
Ans : (a) Divisibility rule by 6 – If a given number is	55
divisible by both 2 and 3 then the number will also be	$\overline{\times 89}$
divisible by 6.	
Divisibility rule by 2 – If the unit digit of a given	88
number is divisible by 2, then the number will also be	Hence, the required number $\overline{\text{will}}$ be $11 - 1 = 10$.
divisible by 2.	
Divisibility rule by 3 – If the sum of all the digits of the	50. Find the remainder, when 3^{10} is divided by 7.
number is divisible by 3, then the number will also be	(a) 4 (b) 3 (d) 6
divisible by 3. $1 + 2 + 2 + 7 + 8 = 21$	(c) 5 (d) 6 PDP NTPC 18 04 2016 Shift : 3
From option (a)- $1 + 2 + 3 + 7 + 8 = 21$	RRB NTPC 18.04.2016 Shift : 3
$=\frac{21}{2}=7$	Ans : (a) $3^{10} = 3 \times 3$
$-\frac{-3}{3}$	
Hence, the number 12378 is divisible by 6.	. <u>59049</u>
47. Choose the missing digit 'x' from the options	7
given for the number 987x54, so that the	= 4 remainder
number is completely divisible by 6.	51. Which of the following numbers is divisible by 12?
(a) 2 (b) 5 (c) 3 (d) 1	(a) 93412 (b) 63412
RRB Group-D – 18/09/2018 (Shift-I)	(c) 73412 (d) 83412
Ans. (c) : The given number will be divisible by 6 if it	RRB ALP & Tec. (31-08-18 Shift-II)
is divisible by 2 and 3.	Ans. (d) : The number which is divisible by 12, should
Divisibility rule by $2 - If$ the unit digit of a number is	be divisible by 3 and 4 also.
divisible by 2, then the number will also be divisible by 2.	If the sum of all the digits of a number is divisible by 3,
The unit digit of given number is 4, which is divisible	the number will also be divisible by 3.
by 2.	If the last two digit of a number are divisible by 4, the
Divisibility rule by $3 - $ If the sum of all the digits of the	number will also be divisible by 4.
given number is divisible by 3, then the number will	From option (d),
also be divisible by 3.	Then $8+3+4+1+2 = 18$, Which is divisible by 3.
$\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$	The last 2-digit of the number are 12, Which is also
	divisible by 4.
From option (c) on putting $x = 3$	Hence, the number 83412 is divisible by 12.
$\frac{36}{2} = 12$	52. Which of the following numbers is divisible by 9?
3	(a) 56765 (b) 47862
Hence, the value of x will be 3.	(c) 54321 (d) 87654
48. What number should be deducted from 1265 to	RRB ALP & Tec. (30-08-18 Shift-III)
make it divisible by 29 exactly?	Ans : (b) If the sum of all the digits of a number is
(a) 15 (b) 16 (c) 18 (d) 17	divisible by 9, the number will be divisible by 9.
RRB NTPC 05.04.2016 Shift : 3	Hence, from option (b),
Ans : (c)	$47862 \Rightarrow 4+7+8+6+2 = 27$, which is divisible by 9.
	Hence option (b) will be true.
43	53. If $3x^2 + ax + 4$ is perfectly divisible by $x - 5$,
29)1265	then the value of a is:
116	(a) -12 (b) -5
$\frac{110}{\times 105}$	(c) -15.8 (d) -15.6
×103	
	RRB ALP & Tec. (09-08-18 Shift-II)
87	RRB ALP & Tec. (09-08-18 Shift-II)Ans : (c) According to the question,
$\frac{87}{18}$	
$\frac{87}{18}$ Hence, 18 should be subtracted from 1265 to make it	Ans : (c) According to the question, $3x^2 + ax + 4 = 0$ (i)
$\frac{87}{18}$	Ans : (c) According to the question,

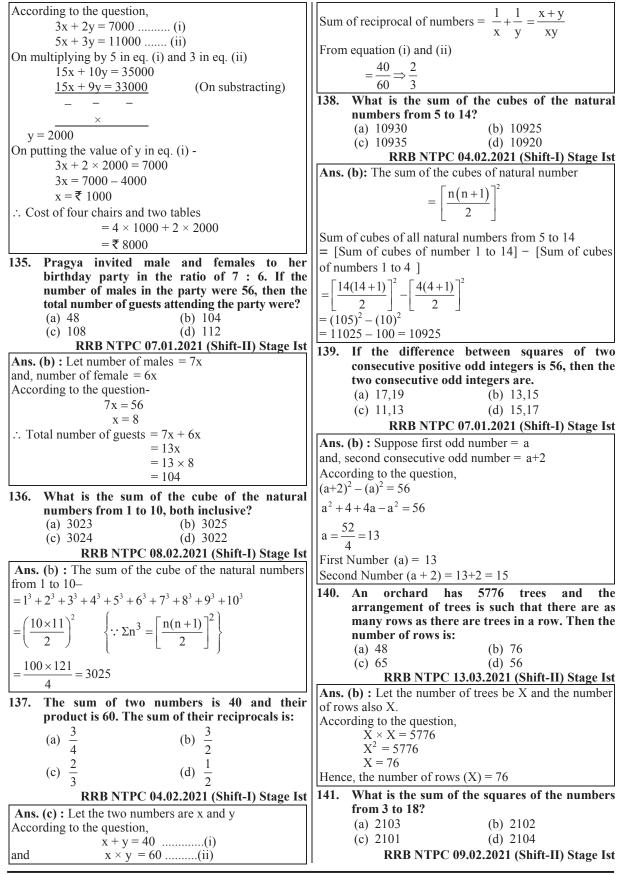

Hence, $\Rightarrow x-5=0$ $\Rightarrow x=5$ Putting the value of x in equation (i), $3(5)^{2} + a \times 5 + 4 = 0$ $75 + 5a + 4 = 0$ $5a = -79$ $a = -15.8$ 54. The product of 4 consecutive numbers is always divisible by which of the following numbers?	 57. If 3 is added to each odd digit and 1 is subtracted from each even digit in the number 42514563, what will be difference between the highest and lowest digits thus formed? (a) 2 (b) 7 (c) 5 (d) 8 RRB GROUP-D - 17/08/2022 (Shift-I) Ans. (b) : Given number = 42514563 According to the question, the number obtained by adding 3 to the odd digit and substracting 1 from the even digit of the number is = 31843856 Hence required difference = 8 - 1 = 7
(a) 10 (b) 22 (c) 24 (d) 48 RRB RPF SI -05/01/2019 (Shift-I) Ans : (c) Let 4 consecutive numbers are n, (n+1), (n+2) and (n+3) respectively. According to the question, The Product of four consecutive numbers = n(n+1)(n+2)(n+3) Where n = 1,2,3,	 58. If 3 is added to each odd digit and 2 is subtracted from each even digit in the number 6452851, what will be difference between the largest and smallest digits thus formed? (a) 8 (b) 6 (c) 4 (d) 2 RRB GROUP-D - 27/09/2022 (Shift-I) Ans. (a) : The number obtained by adding 3 to the odd
Putting n = 1, Product, = 1 (1+1) (1+2) (1+3) = 1 × 2 × 3 × 4 = 24 Putting n = 2, Product of numbers, = 2×3×4×5 = 24 × 5 = 120 Hence, the product of 4 consecutive numbers is always	Ans. (a) . The number obtained by adding 5 to the odd digit and substracting 2 from the even digit of the number is $6 \ 4 \ 5 \ 2 \ 8 \ 5 \ 1$ $\frac{-2 - 2 + 3 - 2 - 2 + 3 + 3}{4 \ 2 \ 8 \ 0 \ 6 \ 8 \ 4}$ Hence the difference of largest and smallest digits = 8 - 0 = 8
divisible by 24. 55. When the number (5) ⁵⁰¹ is divided by 126 then the remainder will be? (a) 117 (b) 121 (c) 89 (d) 125 RRB ALP CBT-2 Mec. & Diesel 21-01-2019 (Shift-I) Ans. (d) :	59. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from the right? (a) 6 (b) 8 (c) 10 (d) 5
$=\frac{(5)^{501}}{126} = \frac{(5^3)^{167}}{126} = \frac{(-1)^{167}}{126}$ $=\frac{-1}{126}$ Remainder = 125	RRB GROUP-D – 18/09/2022 (Shift-II)Ans. (c) : The number obtained by adding 1 to the even digit and substracting 1 from the odd digit of the number is 92379654 $9 2 3 7 9 6 5 4$ $-1+1-1-1-1+1-1+1$ $8 ③ 2 6 8 ④ 4 5$ So the required sum = 3 + 7
Type - 256. If each even digit is divided by 2 and 2 is added to each odd digit in the number 4723361, what will be the sum of the largest and the smallest digits thus formed? (a) 12 (b) 10 (c) 11 (d) 9 RRB GROUP-D - 11/10/2022 (Shift-I)	 = 10 60. The sum of the digits of a two-digit number is 12. The number obtained by interchanging its digits exceeds the given number by 18. The
Ans. (b) : Given, 4723361 According to the question, New number obtained by dividing each even digit by 2 and adding 2 to each odd digit. $\frac{4}{2}(7+2), \left(\frac{2}{2}\right)(3+2)(3+2), \frac{6}{2}(1+2) \Rightarrow 2915533$ Hence Sum of largest digit and smallest digit = 9 + 1 = 10	Ans. (d) : Let the two digit number be $10x + y$ Number oblained by interchanging the digits = $10y + x$ According to the question, $x + y = 12$ (i)And, On reversing the digits, $(10y + x) - (10x + y) = 18$ $y - x = 2$ (ii)On adding eq. (i) and (ii)

x + y = 12	Ans. (a) : In Counting from 301 to 399, the digit 3 comes a total of 119 times.
-x + y = 2	66. Find the two-digit number such that the sum of
2y = 14	its digits is 8 and the digits of the number get
2y = 14	reversed when 36 is added to it.
y = 7	(a) 71 (b) 35
x = 5	(c) 62 (d) 26
Hence, number = $10x + y = 10 \times 5 + 7 = 57$	RRB NTPC 15.02.2021 (Shift-II) Stage Ist
61. In a five digit number, the digit in the hundred's	Ans. (d) : Let number = $10x+y$
place is 2 and the digit in the unit's place is twice	
the digit in the hundred's place. The digit at	
thousands place is zero. The digit in the ten	
thousand's place is the sum of the digit in the	
hundred's place and the digit in the unit's place.	
The digit in the ten's place is the digit in the ten	On solving equation (i) and equation (ii)
thousand's place minus 1. The number is:	x = 2
(a) 60234 (b) 60224	y = 6
(c) 60254 (d) 60264	Hence, required number = $10x + y = 10 \times 2 + 6 = 26$
RRB NTPC 09.02.2021 (Shift-I) Stage Ist	
Ans. (c) : Let us assume the number = abcde	then one possible choice of the digits that come
As per question,	in the place of # and \$ can be:
c = 2	(a) 0, 2 (b) 2, 2
$e = 2 \times c$	(c) 0, 0 $(d) 2, 0$
$e = 2 \times 2$	RRB NTPC 13.03.2021 (Shift-II) Stage Ist
e = 4	Ans. (d) : Divisibility rule of $5' \Rightarrow$ if a number has '0'
$\mathbf{b} = 0$	or '5' in its unit digit then it is completely divisible by 5.
a = 2 + 4	Divisibility rule of '8' \Rightarrow if the last three digits of a given
a = 6	number are divisible by '8' then number will be always
d = 6 - 1	divisible by 8.
d = 5	from option 'd'
Putting all values, then the required number $= 60254$	On putting the value of $\# = 2$ and $\$ = 0$
62. What is the smallest four digit number formed	280320
by using the digits 3, 5, 0, 6?	$\frac{289320}{5} \Rightarrow 57864$
(a) 3056 (b) 0356	
(c) 0536 (d) 3506	$\frac{289320}{8} \Rightarrow 36165$
RRB NTPC 08.02.2021 (Shift-I) Stage Ist	
Ans. (a) : The smallest four-digit number formed by	Hence, option (d) will be correct.
3,5,0,6 = 3056	68. If the largest 4-digit number is subtracted
63. What is the smallest five-digit number formed	from the smallest 6-digit number, then the
by using the digits 2, 3, 4, 0, 5?	remainder will be:
(a) 23045 (b) 20435 (c) 02345 (d) 20345	(a) 90000 (b) 99991
	(c) 80001 (d) 90001
RRB NTPC 04.02.2021 (Shift-I) Stage Ist	RRB NTPC 04.02.2021 (Shift-II) Stage Ist
Ans. (d) : Largest 5 digit number = 99999	Ans. (d) : The smallest number of $6 - \text{digit} = 100000$
Smallest 5 digit number = 10000	The largest number of $4 - \text{digit} = -9999$
The smallest five digit number that can be formed from the digita $2, 2, 4, 0, 5$ is $= 20245$	Required number = 90001
the digits 2, 3, 4, 0, 5 is = 20345	*
64. Find sum of the smallest and the largest	
positive numbers of 6 digits which contains only digits 0, 4, 6 and each of these digits	right of the decimal point in the product of 95.75 and 0.02554?
appears at least once.	(a) 5 (b) 3
(a) 666444 (b) 604604	$ \begin{array}{c} (a) & 5 \\ (c) & 4 \\ (d) & 6 \\ \end{array} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RRB NTPC 11.02.2021 (Shift-I) Stage Ist
RRB NTPC 09.02.2021 (Shift-II) Stage Ist	
Ans. (d) : According to the question-	= 2.445455
\therefore Smallest 6 digit no = 400006	So the number obtained as the product of 95.75 and
Greatest 6 digit no $= 666640$	0.0254 will have 6 significant digits to the right of the
\therefore Required sum = 400006 + 666640 = 1066646	decimal point.
65. How many times is digit 3 comes in counting	
from 301 to 399?	BA \times B3 = 57 A
(a) 119 (b) 11	(a) $A = 2, B = 4$ (b) $A = 3, B = 5$
$\begin{array}{c} (a) & 11 \\ (c) & 121 \\ (d) & 21 \\ \end{array}$	(a) $A = 2, B = 4$ (b) $A = 3, B = 3$ (c) $A = 5, B = 2$ (d) $A = 5, B = 3$
RRB NTPC 10.01.2021 (Shift-II) Stage Ist	
Number System	17 VCT

Ans. (c) : From option (c) Putting the values of A and B	
This (c) if foll option (c) I during the values of T and D	Ans : (c) Let the two consecutive numbers be x and
in the equation.	x+1.
A = 5, B = 2	According to the question-
$BA \times B3 = 57A$	3x = 2(x+1) + 5
$25 \times 23 = 575$	$\Rightarrow 3x = 2x + 7$
575 = 575	$\Rightarrow 3x = 2x + 7$ $\Rightarrow x = 7$
Hence, option (c) will be correct.	
71. The difference between the greatest and the	Hence, the required consecutive numbers will be 7 and 8.
smallest six-digit numbers is:	76. How many times does the digit 2 come in place
(a) 988888 (b) 999999 (c) 888888 (d) 899999	of tens in counting from 1 to 100? (a) 20 (b) 11
RRB NTPC 04.02.2021 (Shift-I) Stage Ist	$\begin{array}{cccc} (a) & 20 \\ (b) & 11 \\ (c) & 10 \\ (d) & 19 \\ \end{array}$
Ans. (d) : The largest six digit number is 999999	RRB NTPC 31.03.2016 Shift : 1
The smallest six digit number is 100000	Ans : (c) From the digit come in place of tens in
$\therefore \text{ Required difference} = 999999 - 100000 = 8999999$	counting, 1 to $10 = 0$ time
72. The sum of the greatest and smallest numbers	From 11 to $20 = 1$ time
of six digits is:	From 21 to $30 = 9$ times
(a) 100000 (b) 199999	From 31 to $100 = 0$ times
(c) 999999 (d) 1099999	\therefore Total required number = 1 + 9 = 10
RRB NTPC 08.02.2021 (Shift-I) Stage Ist	77. How many times does the digit 5 come in the
Ans. (d) : According to question,	counting from 1 to 100?
Greatest number of six-digit = 999999	(a) 21 (b) 22 (c) 10
Smallest number of six-digit = 100000	(c) 20 (d) 19 DDB DDE SU $16/01/2010$ (SLift D)
Hence required sum = $999999 + 100000$	RRB RPF SI-16/01/2019 (Shift-I)
= 1099999	Ans : (c) The total numbers in which 5 comes from 1 to $49 = 5$
73. The least number consisting of five - digit	From 50 to 60, such number = 11
which is divisible by 97 is x. What is the sum of	And from 61 to 100, such number $= 4$
the digits of x?	Hence, total required number $= 5 + 11 + 4 = 20$
(a) 13 (b) 15	
(c) 17 (d) 16	Type - 3
RRB ALP CBT-2 Physics & Maths 21-01-2019 (Shift-III)	Type - 5
Ans. (c) : Minimum five - digit number = 10000	
97)10000(103	78. Find the total number of prime numbers less than 50.
,	(a) 13 (b) 15
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
300	
500	RRR Group-D 06/09/2022 (Shift-III)
	RRB Group-D 06/09/2022 (Shift-III)
-291	Ans. (b) : Total number of prime number less than 50 is
$\frac{-291}{\times 9}$	Ans. (b) : Total number of prime number less than 50 is 15 which is as follows -
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97	Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9)	Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88	 Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum of all prime numbers between 11 and 20 (both
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088	 Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 - 9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8	 Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)?
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17	 Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 - 9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation	 Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 - 9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99?	 Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D – 15/09/2022 (Shift-III)
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 - 9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90	 Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D – 15/09/2022 (Shift-III) Ans. (a) : The sum of all prime numbers between 11
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90 (c) 99 (d) 100 RRB RPF Constable -17/01/2019 (Shift-II)	Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D - 15/09/2022 (Shift-III) Ans. (a) : The sum of all prime numbers between 11 and 20 (both included) = (11 + 13 + 17 + 19) = 60
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90 (c) 99 (d) 100 RRB RPF Constable -17/01/2019 (Shift-II) Ans : (b) The number of tens digit from 1 to 10 = 1	 Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D – 15/09/2022 (Shift-III) Ans. (a) : The sum of all prime numbers between 11 and 20 (both included) = (11 + 13 + 17 + 19) = 60 The sum of all prime number between 30 and 50 (both
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90 (c) 99 (d) 100 RRB RPF Constable -17/01/2019 (Shift-II) Ans : (b) The number of tens digit from 1 to 10 = 1 The number of tens digit from 11 to 90 = 80	Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D - 15/09/2022 (Shift-III) Ans. (a) : The sum of all prime numbers between 11 and 20 (both included) = (11 + 13 + 17 + 19) = 60 The sum of all prime number between 30 and 50 (both included) = (31 + 37 + 41 + 43 + 47) = 199
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90 (c) 99 (d) 100 RRB RPF Constable -17/01/2019 (Shift-II) Ans : (b) The number of tens digit from 1 to 10 = 1 The number of tens digit from 11 to 90 = 80 The number of tens digit from 91 to 99 = 9	 Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 79. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D – 15/09/2022 (Shift-III) Ans. (a) : The sum of all prime numbers between 11 and 20 (both included) = (11 + 13 + 17 + 19) = 60 The sum of all prime number between 30 and 50 (both
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90 (c) 99 (d) 100 RRB RPF Constable -17/01/2019 (Shift-II) Ans : (b) The number of tens digit from 1 to 10 = 1 The number of tens digit from 11 to 90 = 80 The number of tens digit from 91 to 99 = 9 Hence, the total number of tens from series 1 to 99	Ans. (b) : Total number of prime number less than 50 is15 which is as follows -2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 4779. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)?(a) 139(b) 141(c) 137(d) 135RRB GROUP-D - 15/09/2022 (Shift-III)Ans. (a) : The sum of all prime numbers between 11 and 20 (both included) = $(11 + 13 + 17 + 19) = 60$ The sum of all prime number between 30 and 50 (both included) = $(31 + 37 + 41 + 43 + 47) = 199$ \therefore Required positive difference = $199 \sim 60$ = 139
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90 (c) 99 (d) 100 RRB RPF Constable -17/01/2019 (Shift-II) Ans : (b) The number of tens digit from 1 to 10 = 1 The number of tens digit from 11 to 90 = 80 The number of tens digit from 91 to 99 = 9 Hence, the total number of tens from series 1 to 99 = 1 + 80 + 9 = 90	Ans. (b) : Total number of prime number less than 50 is15 which is as follows -2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 4779. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D - 15/09/2022 (Shift-III)Ans. (a) : The sum of all prime numbers between 11 and 20 (both included) = $(11 + 13 + 17 + 19) = 60$ The sum of all prime number between 30 and 50 (both included) = $(31 + 37 + 41 + 43 + 47) = 199$ \therefore Required positive difference = $199 \sim 60$ $= 139$ 80. The greatest prime number less than 200 is:
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90 (c) 99 (d) 100 RRB RPF Constable -17/01/2019 (Shift-II) Ans : (b) The number of tens digit from 1 to 10 = 1 The number of tens digit from 11 to 90 = 80 The number of tens digit from 91 to 99 = 9 Hence, the total number of tens from series 1 to 99 = 1 + 80 + 9 = 90 75. Find two consecutive numbers where thrice the	Ans. (b) : Total number of prime number less than 50 is15 which is as follows -2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 4779. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D - 15/09/2022 (Shift-III)Ans. (a) : The sum of all prime numbers between 11 and 20 (both included) = $(11 + 13 + 17 + 19) = 60$ The sum of all prime number between 30 and 50 (both included) = $(31 + 37 + 41 + 43 + 47) = 199$ \therefore Required positive difference = $199 \sim 60$ $= 139$ 80. The greatest prime number less than 200 is: (a) 199 (b) 193
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90 (c) 99 (d) 100 RRB RPF Constable -17/01/2019 (Shift-II) Ans : (b) The number of tens digit from 1 to 10 = 1 The number of tens digit from 11 to 90 = 80 The number of tens digit from 91 to 99 = 9 Hence, the total number of tens from series 1 to 99 = 1 + 80 + 9 = 90 75. Find two consecutive numbers where thrice the first number is more than twice the second	Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 4779. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D - 15/09/2022 (Shift-III)Ans. (a) : The sum of all prime numbers between 11 and 20 (both included) = (11 + 13 + 17 + 19) = 60 The sum of all prime number between 30 and 50 (both included) = (31 + 37 + 41 + 43 + 47) = 199 ∴ Required positive difference = 199 ~ 60 = 13980. The greatest prime number less than 200 is: (a) 199 (b) 193 (c) 197 (d) 191
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90 (c) 99 (d) 100 RRB RPF Constable -17/01/2019 (Shift-II) Ans : (b) The number of tens digit from 1 to 10 = 1 The number of tens digit from 11 to 90 = 80 The number of tens digit from 91 to 99 = 9 Hence, the total number of tens from series 1 to 99 = 1 + 80 + 9 = 90 75. Find two consecutive numbers where thrice the first number is more than twice the second number by 5.	Ans. (b) : Total number of prime number less than 50 is15 which is as follows -2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 4779. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D - 15/09/2022 (Shift-III)Ans. (a) : The sum of all prime numbers between 11 and 20 (both included) = $(11 + 13 + 17 + 19) = 60$ The sum of all prime number between 30 and 50 (both included) = $(31 + 37 + 41 + 43 + 47) = 199$ \therefore Required positive difference = $199 \sim 60$ $= 139$ 80. The greatest prime number less than 200 is: (a) 199 (b) 193 (c) 197 (d) 191 RRB NTPC 21.01.2021 (Shift-II) Stage Ist
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90 (c) 99 (d) 100 RRB RPF Constable -17/01/2019 (Shift-II) Ans : (b) The number of tens digit from 1 to 10 = 1 The number of tens digit from 11 to 90 = 80 The number of tens digit from 91 to 99 = 9 Hence, the total number of tens from series 1 to 99 = 1 + 80 + 9 = 90 75. Find two consecutive numbers where thrice the first number is more than twice the second number by 5. (a) 5 and 6 (b) 6 and 7	Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 4779. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D - 15/09/2022 (Shift-III)Ans. (a) : The sum of all prime numbers between 11 and 20 (both included) = $(11 + 13 + 17 + 19) = 60$ The sum of all prime number between 30 and 50 (both included) = $(31 + 37 + 41 + 43 + 47) = 199$ ∴ Required positive difference = $199 \sim 60$ = 139 80. The greatest prime number less than 200 is: (a) 199 (b) 193 (c) 197 (d) 191 RRB NTPC 21.01.2021 (Shift-II) Stage Ist Ans. (a) : The greatest prime number less than 200 is
$\frac{-291}{\times 9}$ Hence, five - digit number that is divisible by 97 x = 10000 + (97 -9) x = 10000 + 88 x = 10088 Required sum = 1 + 0 + 0 + 8 + 8 = 17 74. How many total tens digit in the calculation from series 1 to 99? (a) 98 (b) 90 (c) 99 (d) 100 RRB RPF Constable -17/01/2019 (Shift-II) Ans : (b) The number of tens digit from 1 to 10 = 1 The number of tens digit from 1 to 90 = 80 The number of tens digit from 91 to 99 = 9 Hence, the total number of tens from series 1 to 99 = 1 + 80 + 9 = 90 75. Find two consecutive numbers where thrice the first number is more than twice the second number by 5. (a) 5 and 6 (b) 6 and 7	Ans. (b) : Total number of prime number less than 50 is 15 which is as follows - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 4779. What is the positive difference between the sum of all prime numbers between 11 and 20 (both included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141 (c) 137 (d) 135 RRB GROUP-D - 15/09/2022 (Shift-III)Ans. (a) : The sum of all prime numbers between 11 and 20 (both included) = $(11 + 13 + 17 + 19) = 60$ The sum of all prime number between 30 and 50 (both included) = $(31 + 37 + 41 + 43 + 47) = 199$ ∴ Required positive difference = $199 \sim 60$ = 139 80. The greatest prime number less than 200 is: (a) 199 (b) 193 (c) 197 (d) 191 RRB NTPC 21.01.2021 (Shift-II) Stage Ist Ans. (a) : The greatest prime number less than 200 is 100

81. Which of the following numbers is prime?	Ans. (c) : The number of all prime numbers less than 55
(a) 323 (b) 571	is 16
(c) 513 (d) 715 RRB NTPC 02.03.2021 (Shift-II) Stage Ist	i.e. \Rightarrow (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53)
Ans. (b) : According to option,	88. The number of pairs of twin primes between 1
571 is a prime number. Whereas 323 is divisible by 17,	and 100 are:
513 is divisible by 3 and 715 is divisible by 5.	(a) 7 (b) 8
82. Find the smallest three digit prime number?	(c) 10 (d) 9
(a) 107 (b) 109	RRB NTPC 26.07.2021 (Shift-I) Stage Ist
(c) 103 (d) 101	Ans. (b) : The number of pairs of twin primes between
RRB NTPC 23.07.2021 (Shift-II) Stage Ist	1 and 100 are 8.
Ans. (d) : The smallest three-digit prime number = 101	The numbers are - $(252)(252)(1112)(1212)(2221)(1112)(1221)(12221)(1112)(1221)(1221)(1112)(1221)(1112)(1221)(1112)(1221)(1112)(1221)(1112)(1221)(1112)(1221)(1112$
83. Which of the following pairs of numbers are	$\{(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61),(71,73)\}$
co-prime?	Note- Twins prime numbers are that numbers whose
(a) 28, 81 (b) 12, 27	difference is 2.
(c) 21, 56 (d) 36, 20	89. The number that has factors other than 1 and
RRB NTPC 23.07.2021 (Shift-II) Stage Ist	
Ans. (a) : Co-prime numbers are the numbers whose	(a) Prime Number (b) Composite Number
common factor is only 1.	(c) Even Number (d) Odd Number
Hence, in the given option (28, 81) are co-prime	RRB NTPC 26.07.2021 (Shift-I) Stage Ist
numbers.	Ans. (b) : Composite Number:- Numbers which have
84. One-third of the sum of all the prime numbers greater than 5 but less than 18 is the square of:	more than two factors. Ex- 4, 6, 8
(a) 3 (b) 5	Prime Number:- Numbers which have only two factor
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 and itself is called prime number.
RRB NTPC 08.04.2021 (Shift-I) Stage Ist	1
Ans. (d) : Prime numbers greater than 5 but smaller	(a) 9 (b) 7
than $18 = 7, 11, 13, 17$	(c) 10 (d) 8
According to the question-	RRB NTPC 06.04.2021 (Shift-II) Stage Ist
7+11+13+17	Ans. (d) : Prime mumber less than 20.
=	2, 3, 5, 7, 11,13, 17 and 19
3	Hence the number of prime number less than $20 = 8$
$=\frac{48}{}=16=(4)^2$	91. Three prime number are arranged in descending order if the product of the first two
3^{-10} (7)	descending order. If the product of the first two is 323 and that of the last two is 221, then what
Hence, required number $= 4$	is the value of the biggest prime number?
85. Which of the following is a prime number?	(a) 17 (b) 19
(a) 143 (b) 173	(c) 13 (d) 23
(c) 123 (d) 213	RRB NTPC 04.03.2021 (Shift-I) Stage Ist
RRB NTPC 15.03.2021 (Shift-I) Stage Ist	
Ans. (b) : Prime number are the numbers, which are	and z in which x is biggest prime number.
only divisible by 1 and itself.	According to the question, $y = 222$
From the given options-	$x \times y = 323$ Taking
(a) 143 is divisible by 11, so it is not a prime number.	x = 19
(b) 173 is divisible by 1 and itself, so it is a prime	y = 17
number. (c) 123 is divisible by 3, so it is not a prime number.	$19 \times 17 = 323$
5, 1	Taking $y = 17$ and $z = 13$
(d) 213 is divisible by 3, so it is not a prime number.	And $17 \times 13 = 221$
86. Find the sum of prime no. between 50 and 60.	So, the biggest prime number is $=$ 19
(a) 118 (b) 114 (c) 110 (d) 112	92. How many of the integers between 109 and 121,
RRB NTPC 31.01.2021 (Shift-I) Stage Ist	
Ans. (d) : The prime number between 50 and 60–	(a) 1 (b) 0
53 and 59	(c) 2 (d) 3
Required Sum = $53 + 59 = 112$	RRB NTPC 08.02.2021 (Shift-I) Stage Ist
87. Find the number of all prime numbers less	Ans. (c) : Two integers (109, 113) between 109 and 121 both inclusive are prime numbers.
than 55.	93. Which of the following numbers is prime?
(a) 18 (b) 17	(a) 263 (b) 243
(c) 16 (d) 15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
RRB NTPC 30.12.2020 (Shift-I) Stage Ist	

Ans : (a) To identify a prime number, compare the	100. Which of the following pairs are co-primes?
given number with its nearest square. For example	(a) 348,296 (b) 114,213
option (a), 263 (Which is between the squares of 16 and	(c) 59,97 (d) 3025,4920
17)	RRB Group-D – 20/09/2018 (Shift-II)
$16^2 = 256$	Ans : (c) Such two numbers are called co-prime whose
	HCF is 1.
$17^2 = 289$	In option (c) 59, 97 is the appropriate co-prime pair in
Then, divide the given number by all the prime numbers	the alternatives.
below 16 and 17. If the number is not divisible by any	101. Which of the following numbers is divisible?
number then it is a prime number.	(a) 719 (b) 709
\Rightarrow 263 (is less than the square of 17)	(c) 729 (d) 739
Which is not divisible by 2,3,5,7, 11 and 13.	RRB Group-D – 20/09/2018 (Shift-I)
Hence, it is a prime number.	Ans. (c) The number- 729 is divisible by 3, 9 and 81.
94. Find the largest two-digit prime number.	102. How many prime numbers are in first 100
(a) 93 (b) 89 (c) 91 (d) 97	natural numbers? (b) 27
RRB JE - 23/05/2019 (Shift-II)	(a) 25 (b) 27 (c) 24 (d) 26
Ans : (d) The number which is divisible by only 1 and	RRB Group-D – 26/11/2018 (Shift-III)
itself is called prime number.	Ans : (a) Prime numbers in first 100 natural numbers =
Hence, It is clear that the largest two digit prime	2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
number = 97	59, 61, 67, 71, 73, 79, 83, 89, 97
95. What will be the product of the smallest prime	Therefore, total such numbers are 25.
number (except 0) and any whole number?	103. Find out which of the following sets form co-
(a) Always 0(b) Always 1	prime numbers.
(c) Always even number	(a) $(12, 7)$ (b) $(21, 42)$
(d) Always odd number	(c) (3, 9) (d) (43, 129)
RRB RPF Constable -20/01/2019 (Shift-II)	RRB NTPC 18.01.2017 Shift : 1
Ans : (c) The smallest prime number $= 2$,	Ans : (a) Co-prime numbers- The set of two such
The result of the product of any whole number(except	numbers whose HCF is 1, is called co-prime numbers.
0) and 2 is always an even number.	\therefore In option (a), HCF of the numbers (12, 7) = 1
96. Find the sum of the prime numbers between 50	104. Which of the following is an odd composite
and 80.	number?
(a) 392 (b) 390	(a) 13 (b) 17 (c) 12 (d) 15
(c) 463 (d) 396	RRB NTPC 18.01.2017 Shift : 2
RRB RPF Constable -18/01/2019 (Shift-I)	Ans : (d) In the given options odd composite number
Ans : (c) Sum of prime numbers between 50 and 80 =	will be 15.
53 + 59 + 61 + 67 + 71 + 73 + 79 = 463	105. Find the sum of first 8 odd prime numbers.
97. The sum of which four odd prime numbers is	(a) 77 (b) 98
34?	(c) 75 (d) 100
(a) 1, 3, 5, 7 (b) 3, 5, 7, 9	RRB NTPC 19.04.2016 Shift : 2
(c) 3, 5, 11, 13 (d) 3, 7, 11, 13	Ans : (b) First 8 odd prime numbers = 3, 5, 7, 11, 13,
RRB NTPC 04.04.2016 Shift : 2	17, 19, 23
Ans: (d) From option- (d)	Sum of the numbers = $3 + 5 + 7 + 11 + 13 + 17 + 19 + 23$
3+7+11+13=34	= 98
98. In a prime number	106. How many prime numbers are between
(a) There are more than two divisors.	positive integers 60 and 100?
(b) The number divided by itself and 1.	(a) 9 (b) 6
(c) It has no divisor.(d) Is not a positive integer.	(c) 7 (d) 8 RRB NTPC 06.04.2016 Shift : 1
(d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2	Ans : (d) The prime numbers between 60 and $100 = 61$,
Ans : (b)	67, 71, 73, 79, 83, 89, 97
A prime number is divided by only itself and 1.	Hence, Total 8 prime numbers will be between 60 and
99. How many total prime numbers are in first 200	100.
odd natural numbers?	107. Which of the following numbers is a prime
(a) 45 (b) 49 (c) 50 (d) 46	number?
RRB Group 'D' 07/12/2018 (Shift-I)	(a) 121 (b) 141
Ans : (a) Total prime numbers in first 200 odd natural	(c) 181 (d) 161
numbers = $3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,$	RRB ALP & Tec. (21-08-18 Shift-II)
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,	Ans : (c) Prime numbers are divisible by 1 and itself
109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,	only.
173, 179, 181, 191, 193, 197, 199 = 45	Example:- 5,11,13,19
	1



118. A 3 digit number is such that the ratio of its According to the question, units digit, tens digit and hundreds digit is 1:2 $\frac{3x}{5} + \frac{4x}{15} + 60 = x$: 3. The sum of this number and the reversed number obtained by reversing the order of its $60 = x - \left(\frac{3x}{5} + \frac{4x}{15}\right)$ digits is 1332. Find the number. (b) 414 (a) 246 (c) 123 (d) 369 $60 = x - \frac{13x}{15}$ RRB Group-D 26/08/2022 (Shift-III) Ans. (d) : $\therefore \frac{2x}{15} = 60 \Rightarrow x = 450$ Let three digit number = $100 \times 3x + 10 \times 2x + x$ = 300x + 20x + x= 321xNumber of marbles Won by Sunita = $450 \times \frac{3}{5} = 270$ New number obtained by reversing the digits $= 100 \times x + 10 \times 2x + 3x$ The difference between two numbers is 18. If 116. = 100x + 20x + 3xthe difference between their squares is 360, find the larger number. = 123x(a) 18 (b) 15 According to the question, (c) 19 (d) 16 321x + 123x = 1332RRB GROUP-D - 29/09/2022 (Shift-I) 444x = 1332**Ans. (c) :** Let the smaller number = y X = 3and larger number = x Hence number = $100 \times 3 + 10 \times 2 \times 3 + 3 \times 3$ According to the question, = 300 + 60 + 9 $x - y = 18 \dots (i)$ $x^{2} - y^{2} = 360$ (x + y) (x - y) = 360 (x + y) 18 = 360= 369119. A man plants 21,025 mango trees in his garden in such a way that there are as many rows as there are mango trees in each row. Find the x + y = 20(ii) number of rows. On adding equation (i) and equation (ii) -(a) 135 (b) 125 (c) 145 (d) 130 x + y = 20**RRB Group-D 30/08/2022 (Shift-II)** x - y = 18Ans. (c) : Let the number of rows in garden = x2x = 38And number of tree in each row = xx = 19 According to the question, y = 20 - x= 20 - 19 $\mathbf{x} \times \mathbf{x} = 21025$ = 1 $x = \sqrt{21025}$ x = 145 Hence larger number = 19 and smaller number = 1Hence, Number of rows in garden = 145A 91 cm long wire is cut into two pieces so that 117. the length of one piece is three-fourth of the The sum of two numbers is 27. Five times one 120. other. Find the length of the shorter piece. number is equal to 4 times the other. The (a) 36.23 m (b) 39 cm smaller of the two numbers is : (d) 38 cm (c) 42.17 cm (a) 12 (d) 15 (b) 11 (c) 13RRB Group-D 22/08/2022 (Shift-I) **RRB Group-D 30/08/2022 (Shift-II)** Ans. (b) : Let the length of second piece = x cmAns. (a) : Let the numbers be x and y Length of first piece = $x \times \frac{3}{4} = \frac{3x}{4}$ According to the question : $\therefore \rightarrow x + y = 27$ — -----(i) According to the question, $\therefore \rightarrow 5x = 4y$ $\Rightarrow \frac{3x}{4} + x = 91$ $\Rightarrow 7x = 91 \times 4$ 5x - 4y = 0 —(ii) On solving equation (i) and (ii) : y = 15 $\Rightarrow x = \frac{91 \times 4}{7}$ x = 12Hence, the smaller number is 12 length of second piece (x) = 52 cm 121. There are two consecutive natural numbers such that the sum of their squares is 313. Find Length of first piece = $52 \times \frac{3}{4}$ smaller of these two numbers. (a) 12 (b) 14 (c) 15 (d) 13 = 39 cm**RRB Group-D 24/08/2022 (Shift-I)** Hence the length of the shorter piece = 39 cm

Ans. (a) : $b = \frac{70}{2}$ Let two consecutive natural numbers are x and (x + 1) $b = 3\overline{5}$ According to the question. $x^{2} + (x + 1)^{2} = 313$ Cost of one chair = ₹35 $x^2 + x^2 + 1 + 2x = 313$ So cost of 5 chairs = $5 \times 35 = ₹175$ $2x^2 + 2x = 312$ 124. The sum of two positive numbers is 45 and $x^2 + x = 156$ their difference is 19. What are the numbers? $x(x+1) = 13 \times 12$ (a) 25, 20 (b) 32, 13 x =12 (c) 30, 15 (d) 31, 15 Hence, smaller of these two numbers = 12RRB Group-D 01/09/2022 (Shift-III) In a competitive exam, 3 marks are to be **Ans. (b)**: Let the numbers be x and y respectively 122. awarded for every correct answer and for According to the question, every wrong answer, 1 mark will be deducted. x + y = 45(i) Sindhu scored 80 marks in this exam. Had 4 x - y = 19 (ii) marks been awarded for each correct answer On adding equation (i) and equation (ii), and 2 marks deducted for each incorrect 2x = 64answer. Sindhu would have scored 90 marks. If x = 64/2 = 32Sindhu attempted all the questions, then the On putting the value of x in equation (i), number of questions in the test are : 32 + y = 45(a) 60 (b) 55 y = 45 - 32 = 13(c) 70 (d) 50 Hence the numbers are 32 and 13. RRB Group-D 09/09/2022 (Shift-I) Ans. (a) : Let the correct question = x125. Find the number whose $\frac{1}{3}$ rd part is 6 more than incorrect question = yAccording to the question, its $\frac{1}{5}$ th part. 3x - y = 80 (i) 4x - 2y = 90 (ii) (a) 50 (b) 45 (c) 40 (d) 35 On multiplying by 4 in equation (i) and 3 in eq. (ii) RRB Group-D 06/09/2022 (Shift-II) 12x - 4y = 320 (iii) **Ans. (b) :** Let the number be x. $12x - 6y = 270 \dots$ (iv) According to the question. $\mathbf{x} \times \frac{1}{3} - \mathbf{x} \times \frac{1}{5} = 6$ 2y = 50y = 25 $5x - 3x = 15 \times 6$ On putting the value of y in equation (i), 2x = 903x = 80 + 25x = 45 $x = \frac{105}{3} = 35$ 126. The sum of two numbers is 32 and one of them exceeds the other by 18. Find the greater Hence number of question in the test number. (x+y) = 35 + 25(a) 25 (b) 28 (c) 24 (d) 27 = 60RRB Group-D 18/08/2022 (Shift-III) The cost of 2 tables and 3 chairs is ₹540, while 123. Ans. (a) : Let the greater number = a that of 2 tables and 1 chair is ₹470. What is the and smaller number = b cost of 5 chairs ? According to the question, (a) ₹ 245 (b) ₹ 205 $a + b = 32 \dots (i)$ (c) ₹175 (d) ₹ 185 a - b = 18 (ii) RRB Group-D 01/09/2022 (Shift-III) On adding eq. (i) and eq. (ii), Ans. (c) : Let the cost by one table and chair be a and b 2a = 50respectively. a = 25 According to the first condition, So, 2a + 3b = 540(i) b = 7According to the second condition, Hence the greater number is 25. $2a + b = 470 \dots$ (ii) 127. Three chairs and two tables cost Rs. 1,850. Five On substracting equation (ii) from equation (i), chairs and three tables cost Rs. 2,850. Find the 2a + 3b = 540cost of two chairs and two tables. 2a + b = 470(a) 700 (b) 1,700 (c) 1,400 (d) 1,300 2b = 70RRB Group-D 13/09/2022 (Shift-III)

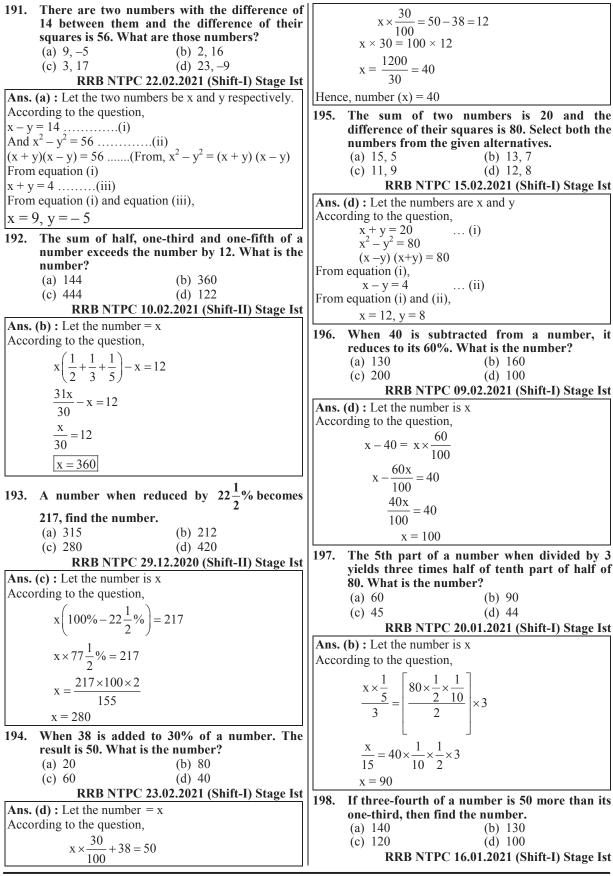
Number System

	131. If the sum of two numbers is 25 and the
respectively.	product is 136, then the sum of their cubes is :
According to the question,	(a) 5425 (b) 5524
3C + 2T = 1850 (i)	(c) 4525 (d) 4524
5C + 3T = 2850 (ii)	RRB GROUP-D – 11/10/2022 (Shift-I)
	· · · · · · · · · · · · · · · · · · ·
On substracting eq. (i) \times 3 from eq. (ii) \times 2 -	Ans. (a) : Let the numbers be a and b respectively.
10C + 6T = 5700	According to the question
9C + 6T = 5550	a + b = 25
C = ₹150	ab = 136
So, T = ₹700	$\therefore [a^{3} + b^{3} = (a+b) (a^{2} + b^{2} - ab)]$ $(a+b)^{2} = (25)^{2} (\text{On squaring both side})$ $a^{2} + b^{2} + 2ab = 625$ $a^{2} + b^{2} = 625 - 272$
Hence the cost of two chairs and two tables	$[a^{2} + b^{2} = (a+b)(a^{2} + b^{2} - ab)]$
	$(a+b)^2 = (25)^2$ (On squaring both side)
$= 150 \times 2 + 700 \times 2$	$a^2 + b^2 + 2ab = 625$
= 300 + 1400	$a^2 + b^2 = 625 - 272$
=₹1700	$a^2 + b^2 = 353$
128. A number is split into two parts such that one	$a^3 + b^3 = 25 \times (353 - 136)$
part is 14 more than the other, and the ratio of	
the two parts is 7 : 5. Find the number.	u · 0 25 × 217
	$a^3 + b^3 = 5425$
	132. The product of two consecutive positive natural
RRB GROUP - D – 29/09/2022 (Shift–II)	numbers is 72. The greater of the two numbers
Ans. (c) :	is:
Let number be x	
First part = $x + 14$	(a) 12 (b) 24
Second part = x	(c) 9 (d) 8
According to the question,	RRB GROUP-D – 18/09/2022 (Shift-II)
	Ans. (c) : Let the two consecutive positive natural
$\frac{x+14}{5} = \frac{7}{5}$	number be x and $(x + 1)$ respectively.
x 5	So, According to the question,
5x + 70 = 7x	
2x = 70	x(x+1) = 72
x = 35	$x^{2} + x - 72 = 0$
129. If one-third of a number is 6 more than the	$x^2 + 9x - 8x - 72 = 0$
number itself, then find the number.	(x+9)(x-8) = 0
(a) -7 (b) -6 (c) -5 (d) -9	$\therefore \overline{\mathbf{x}=8}$
RRB GROUP-D – 27/09/2022 (Shift-I)	Hence the greater number = $x + 1$
Ans. (d) : Let the number be x.	-
	$\Rightarrow 8 + 1 = 9$
According to the question,	133. The sum of two numbers is 20 and their
X = x + 6	difference is 16. The ratio of the larger number
$\frac{x}{3} = x + 6$	to the smaller number is:
	(a) 1:9 (b) 11:2
$\frac{x}{3} - x = 6$	(c) 2:11 (d) 9:1
3	RRB GROUP-D – 15/09/2022 (Shift-III)
$\frac{-2x}{2} = 6$	
$\frac{-3}{3} = 0$	Ans. (d) : Let the two numbers be x and y
	According to the question,
x = -9	$x + y = 20 \dots (i)$
130. Ujjwal has ₹5,250 in currency notes of	x - y = 16 (ii)
denominations ₹50, ₹100 and ₹200. The	On adding eq. (i) and eq. (ii)
number of notes of each denomination are	2x = 36
equal. How many notes in total does Ujwal	
have ?	x = 18
	$\therefore y = 20 - 18 = 2$
(a) 30 (b) 45 (c) 60 (d) 15 $11/10/2022$ (SI SI D	Hence the Required ratio $= 18:2$
RRB GROUP-D – 11/10/2022 (Shift-I)	= 9:1
Ans. (b) : Let Ujjwal have ₹ 3x notes because notes of	
each denomination are equal.	134. Three chairs and two tables cost ₹7,000 and
According to the question,	five chairs and three tables cost ₹11,000. What
50x + 100x + 200x = 5250	is the cost of four chairs and two tables ?
350x = 5250	(a) ₹ 9,600 (b) ₹ 9,000
x = 15	(c) ₹ 6,000 (d) ₹ 8,000
	RRB Group-D 08/09/2022 (Shift-II)
\therefore Total number of notes = 3x	Ans. (d) : Let the price of chair and table be x and y
- 16 - 17	
$= 15 \times 3$	respectively
$= 13 \times 3$ $= 45$	respectively.

Ans. (d)
Sum of squares of the first iv terms
$$= n(2n+1)(n+1)$$

Sum of squares of numbers form 3 to 18
 $= (1^2+2^2+3^3+4^2+....+18^3) - (1^2+2^2)$
 $= \frac{18(18\times2+1)(18+1)}{6} - 5$
 $= 2109 - 5$
 $= 2109 - 5$
 $= 2109 - 5$
 $= 2109 - 5$
 $= 2109 - 5$
 $= 2109 - 5$
 $= 2104$
RRB NTPC 04.02.021 (Shift-II) Stage Ist
As. (a) 1 Let the two numbers is 20 and their
product is 96. What is the difference between
the two numbers?
(a) 4 (b) 5
(c) 6 (c) 8
RRB NTPC 04.02.021 (Shift-II) Stage Ist
As. (a) 1 Let the two numbers are x and y.
According to the question,
 $x + y = 20$
 $xy = 96$
From, $x - y = \sqrt{(x+y)^2 - 4xy}$
 $= \sqrt{160}$
As. (a) 2 Let the two numbers is 30 and their
product is 50, then the sum of their reciprocals
(a) $\frac{3}{5}$ (b) $\frac{5}{3}$
(c) $\frac{2}{5}$ (d) $\frac{5}{2}$
RRB NTPC 08.02.021 (Shift-II) Stage Ist
As. (b) 1 Let the numbers $ex x$ and y.
 $x + y = 16$
As. (b) 2 Let the numbers $ex x$ and y.
 $x + y = 16$
As. (a) 1 Let the numbers is 30 and their
product is 50, then the sum of their reciprocals
(a) $\frac{3}{5}$ (b) $\frac{5}{3}$
(c) $\frac{2}{5}$ (d) $\frac{5}{2}$
RRB NTPC 08.04.2021 (Shift-II) Stage Ist
As. (b) 1 Let the numbers $ex x_{3,3} \times As = \frac{5}{2} - \frac{3}{2}$
Hence, the product of two numbers $ex x_{3,3} \times As = \frac{5}{2} - \frac{3}{2}$
Hence, the runders is 10 more than half of the
second number. If 8 is subtracted from $\frac{3}{7}$ of the
first number, the it is comes 4 less than half of
the second number. If 8 is subtracted from $\frac{3}{7}$ of the
first number, then it becomes 4 less than half of
the second number. If 8 is subtracted from $\frac{3}{7} = 16$
 $(a) 3.2$ (b) 5.3
(c) $34 - (b) (2.3)$
As. (b) 1 Let the numbers be a and b.
According to the question, $\frac{3}{7} - \frac{2}{2} = \frac{10}{6}$
 $(a) - 5 + 22 = 23$ (from equation (i)
 $2y = 44$
 $x = \frac{100 + 5 \times 22}{2} = 35$ (from equation (i)
Hence, sum of two numbers $x + y = 35 + 22 = 57$

	152. Find the least number which must be added to
their sum is 30. Find the sum of second and	the number 6412 to get a perfect square.
fifth number?	(a) 149 (b) 129
(a) 15 (b) 14	(c) 181 (d) 150
(c) 13 (d) 12	RRB NTPC 12.01.2021 (Shift-II) Stage Ist
RRB NTPC 05.04.2021 (Shift-II) Stage Ist	
Ans. (b) : Let the number are x , $2x$, $3x$, $4x$, $5x$.	$(81)^2 = 6561$
According to the question,	Hence on adding $6561 - 6412 = 149$, 6412 will be the
x+2x+3x+4x+5x=30	perfect square.
$15x=30 \Rightarrow x=2$	153. Out of four consecutive numbers, the sum of
Then the sum of (second+fifth) number = $2x+5x=7x$	the first two numbers is equal to the fourth
= 7×2=14	number. What is half of the sum of the four numbers.
149. There are 2401 students in a school. The PT	(a) 14 (b) 7
teacher wants all of them to stand in rows and	(a) + (b) + (c)
columns. Find the number of rows, if the number of rows is equal to the number of	RRB NTPC 12.01.2021 (Shift-II) Stage Ist
columns.	Ans. (b) : Let four consecutive numbers be $x_1(x + 1)$,
(a) 29 (b) 39	(x+2) and $(x+3)$
$\begin{array}{c} (a) & 2^{3} \\ (c) & 49 \\ (d) & 19 \\ \end{array}$	According to question,
RRB NTPC 10.02.2021 (Shift-II) Stage Ist	x + (x + 1) = x + 3
Ans. (c) : Let number of Rows = x	x = 2
then number of columns = x	4x + 6
Number of students in school = 2401 (given)	Half of the sum of four number = $\frac{4x+6}{2} = 2x+3$
\therefore Number of rows × Number of columns = 2401	$2^{2} = 2 \times 2 + 3$
\therefore Number of rows \land Number of columns -2401 \therefore $x \times x = 2401$	= 7
$x^{2} = 2401$	154. 24 mango trees, 56 apple trees and 72 orange
$\begin{array}{c} x & -2401 \\ x = 49 \end{array}$	trees have to be planted in rows such that each
x - 49 Hence, the number of rows (x) = 49	row contains the same number of trees of one
	variety only. Find the minimum number of
150. The sum of two numbers is 27 and the difference of their squares is 243. What is the	rows in which the above mentioned trees may
difference between the numbers?	be planted.
(a) 42 (b) 9	(a) 15 (b) 18 (c) 17 (c) 10
(c) 72 (c) 3	(c) 17 (d) 19 DDD NTDC 04 01 2021 (Shift II) Store Let
RRB NTPC 05.02.2021 (Shift-I) Stage Ist	RRB NTPC 04.01.2021 (Shift-II) Stage Ist
Ans. (b) : let us the numbers be x and y respectively.	Ans. (d):
Given,	(Number of total columns × Number of total rows) 8×3
	8 × 7
x + y = 27 - (i) x2 - y2 = 243	8×9
(x-y)(x+y) = 243(ii)	8(3+7+9) = Total number of trees
Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii),	Total number of rows = $3 + 7 + 9 = 19$
$(x-y) \times 27 = 243$	
243	155. What is the sum of the cubes of the first four natural numbers?
$(x-y) = \frac{243}{27} = 9$	(a) 96 (b) 84
So, difference between the numbers $= x-y=9$	(c) 100 (d) 1000
	RRB NTPC 23.07.2021 (Shift-I) Stage Ist
151. What is the sum of the squares of the numbers from 1 to 12?	Ans. (c) : First four natural numbers–
(a) 655 (b) 660	\Rightarrow 1, 2, 3, 4
$\begin{array}{c} (a) & 655 \\ (c) & 650 \\ (d) & 665 \\ \end{array}$	Cube,
RRB NTPC 04.02.2021 (Shift-II) Stage Ist	$(1)^3 = 1$
	$(2)^3 = 8$
Ans. (c): $1^2 + 2^2 + 3^2 + \dots + 12^2$	$(3)^3 = 27$
From, Sum of the square of the first n natural numbers	$(4)^3 = 64$ Sum of cubes of the first four natural numbers
$= \frac{n(n+1)(2n+1)}{6}$	Sum of cubes of the first four natural numbers = $1 + 8 + 27 + 64$
	= 9 + 27 + 64
12×13×25	= 36 + 64
$=\frac{12\times13\times25}{6}=650$	= 100


Ans. (b) : Let the no. = x156. $\frac{6}{11}$ of the people present in a hall are sitting in According to question, actual answer = 2xof the chairs available, and the rest are and from the question $\frac{x}{2} = 2$ standing. If there are 30 empty chairs, how many people in the hall are standing? (a) 40 (b) 35 x = 4(c) 30 (d) 45 Actual answer = 2xRRB NTPC 23.07.2021 (Shift-I) Stage Ist $= 2 \times 4 = 8$ Ans. (d) : If number of total chair = x160. In a reunion of class XII, out of 45 students, 30 Then empty chair = $x - \frac{9x}{14} = \frac{5x}{14}$ students participated in the function. If all present in the function shake hands with one Whereas, $\frac{x \times 5}{14} = 30$ other, find the total number of handshakes. (a) 870 (b) 435 x = 84 (Number of total chair) (c) 841 (d) 900 Hence, number of people sitting on the chair. RRB NTPC 12.01.2021 (Shift-I) Stage Ist 84 - 30 = 54Ans. (b) : Total number of handshakes If total people are y then, $=\frac{n}{2}(n-1)$ $\frac{\mathbf{y} \times \mathbf{6}}{11} = 54$ $=\frac{30}{2}(30-1) = 15 \times 29$ or y = 99 people : Number of standing people $y\left(1-\frac{6}{11}\right) = y \times \frac{5}{11}$ = 435Hence, Number of standing people = $\frac{99 \times 5}{11} = 45$ people 161. The difference of two numbers is 5. If their product is 336, find the sum of the numbers. (a) 21 (b) 37 157. One-fourth of one-eight of a number is 300. (c) 28 (d) 51 What is one fifth of the same number? RRB JE - 26/06/2019 (Shift-I) (a) 1900 (b) 1910 (c) 1920 (d) 1890 Ans. (b) Let the numbers be x and y respectively. x - y = 5RRB NTPC 03.03.2021 (Shift-I) Stage Ist (i) xy = 336Ans. (c) : Let the required number = x(ii) $(x + y)^2 = (x-y)^2 + 4xy$ From equation (i) and (ii), According to the question, $\left(\mathbf{x} \times \frac{1}{8}\right) \times \frac{1}{4} = 300$ $\begin{aligned} &(x + y)^2 = (5)^2 + 4 \times 336 \\ &(x + y)^2 = 25 + 1344 \\ &(x + y)^2 = 1369 \end{aligned}$ $x = 300 \times 32 \Longrightarrow x = 9600$ $(x + y) = \sqrt{1369}$ Then, $9600 \times \frac{1}{5} = 1920$ x + y = 37Hence, the required sum of the numbers =37158. Two-fifth of one-fourth of three-seventh of a 162. If x + y = 11, then $(-1)^{x} + (-1)^{y}$ is equal to number is 15. What is the half of that number? (where x and y are whole numbers). (a) 375 (b) 175 (a) -1 (b) 1 (c) 300 (d) 170 (c) 2 (d) 0 RRB NTPC 09.02.2021 (Shift-I) Stage Ist RRB JE - 23/05/2019 (Shift-I) **Ans. (b) :** Let the number is x Ans: (d) Given x + y = 11 $(-1)^{x} + (-1)^{y} = ?$ According to the question, $x \times \frac{3}{7} \times \frac{1}{4} \times \frac{2}{5} = 15$ x = 350 Note- When the sum of two whole numbers is an odd number then one will be even and second will be odd. Hence, $(-1)^{\text{even/odd}}$ then, half of that number = $\frac{350}{2}$ $+(-1)^{\text{odd/even}}=0$ 163. From a cloth of 30 m long, 12 pieces each = 175measuring 225 cm are cut and sold. How much Instead of multiplying a number by 2, Rahul 159. is left of the original length? divided it by 2 and got the answer as 2. What (b) 1/9 (a) 1/3 should be the actual answer? (c) 1/10 (d) 3/10 RRB JE - 23/05/2019 (Shift-III) (a) 4 (b) 8 Ans : (c) The total length of the cloth = 30 m [1m = 100](c) 6 (d) 2 cm] = 3000 cmRRB NTPC 25.01.2021 (Shift-I) Stage Ist

The length of the remaining cloth = 3000 = 2700 = 3000 or The remaining part = $\frac{300}{3000} = \frac{1}{10}$ 164. If 1/7 of a number is subtracted from the number, the result is 30 less than the number. (a) 105 (b) 140 (c) 120 (d) 210 RRB JE - 25/05/2019 (Shift-II) Ans : (a) Let the number be x. $x - \frac{x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ $\frac{6x - 7x - 210}{x - 210}$ x = 210 165. If the product of two numbers is 24, and their sum. (a) 5 (b) 10 (c) 15 (c) 10 (c) 15 (c) 10 (c) 15 (c) 10 (c) 16 RRB RPF Constable - 24/05/2019 (Shift-II) Ans : (b) Let the numbers be x and y. According to the question, x, y = 24(1) $x^2 + y^2 + 52$ (2) $\because (x + y)^2 = x^2 + y^2 + 2xy$ = 52 + 2x24 = 52 + 2x24 166. If 10 is subtracted from the 5 times of an number, then that number will be equal to the number found when adding 8 to 4 times of that number? (a) 15 (b) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 22 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 18 (c) 22 (c) 21 (c) 21 (c) 18 (c) 12 (c) 16 (c) 12 (c) 18 (c) 12 (c) 16 (c) 16 (c) 12 (c) 16 (c) 12 (c) 16		
RRB JE - 2505/2019 (Shift-II Am: (a) Let the numbers is subtracted from the rundthen number, the result is 30 less than the number.(a) 105(b) 140(c) 120(c) 15(c) 100(c) 15(c) 110(c) 15(c) 110(c) 16(c) 110(c) 17(c) 120(c) 17(c) 120(c) 16(c) 100(c) 17(c) 120(c) 17(c) 120(c) 18(c) 110(c) 19(c) 120(c) 100(c) 120(c) 120(c) 121(c) 120(c) 121	Total length of the cloth that is sold $=225 \times 12 = 2700$ cm	(a) 12 (b) 15
10.4. If D7 of a multiple is subtracted rout use $x + y = 22 \dots (i)$ multiple is 30 less than the number. Find the number. (a) 105 (b) 140 (c) 120 (d) 210 RBB LF - 24/05/2019 (Shift-III Ans: (d) Let the number be x. $x - \frac{x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ 6x = 7x - 210 165. If the product of two numbers is 24, and ther (a) 5 (b) 16 (c) 15 (d) 20 RBB RPF Constable - 24/01/2019 (Shift-III Ans: (b) Let the number be x and y. According to the question, x + y = 22 $\frac{11}{5}y = 22$ $y = \frac{22 \times 5}{11} = 10$ $y = \frac{22 \times 5}{10} = 12$ Hence, the larger number is 12. 166. If 10 is subtracted from the 5 times of a number, then that number? (a) 15 (b) 14 (c) 22 $x + y^2 = 52 - 428 = 100$ $x + y - \frac{100}{10} = 10$ 166. If 10 is subtracted from the 5 times of a number, then that number? (a) 12 (b) 12 (c) 22 (b) 18 x + y = 10 RBB RPF Constable - 25012019 (Shift-III Ans: (a) Let the number be x . According to the question, $x + y - \frac{100}{2} = x - 84 - 42$ 2x + 20 = 8x - 4 2x + 30 = 3x - 5 (c) 15 F (c) (d) 8 (c) 40 (c) (b) 380 (c) 12 (c) (h) 18 (c) 196 (d) 192 Rue RPF-SI - 13001/2019 (Shift-III According to the qu		
10.4. If D7 of a multiple is subtracted rout use $x + y = 22 \dots (i)$ multiple is 30 less than the number. Find the number. (a) 105 (b) 140 (c) 120 (d) 210 RBB LF - 24/05/2019 (Shift-III Ans: (d) Let the number be x. $x - \frac{x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ 6x = 7x - 210 165. If the product of two numbers is 24, and ther (a) 5 (b) 16 (c) 15 (d) 20 RBB RPF Constable - 24/01/2019 (Shift-III Ans: (b) Let the number be x and y. According to the question, x + y = 22 $\frac{11}{5}y = 22$ $y = \frac{22 \times 5}{11} = 10$ $y = \frac{22 \times 5}{10} = 12$ Hence, the larger number is 12. 166. If 10 is subtracted from the 5 times of a number, then that number? (a) 15 (b) 14 (c) 22 $x + y^2 = 52 - 428 = 100$ $x + y - \frac{100}{10} = 10$ 166. If 10 is subtracted from the 5 times of a number, then that number? (a) 12 (b) 12 (c) 22 (b) 18 x + y = 10 RBB RPF Constable - 25012019 (Shift-III Ans: (a) Let the number be x . According to the question, $x + y - \frac{100}{2} = x - 84 - 42$ 2x + 20 = 8x - 4 2x + 30 = 3x - 5 (c) 15 F (c) (d) 8 (c) 40 (c) (b) 380 (c) 12 (c) (h) 18 (c) 196 (d) 192 Rue RPF-SI - 13001/2019 (Shift-III According to the qu	The remaining part = $300 1$	
10.4. If D7 of a multiple is subtracted rout use $x + y = 22 \dots (i)$ multiple is 30 less than the number. Find the number. (a) 105 (b) 140 (c) 120 (d) 210 RBB LF - 24/05/2019 (Shift-III Ans: (d) Let the number be x. $x - \frac{x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ 6x = 7x - 210 165. If the product of two numbers is 24, and ther (a) 5 (b) 16 (c) 15 (d) 20 RBB RPF Constable - 24/01/2019 (Shift-III Ans: (b) Let the number be x and y. According to the question, x + y = 22 $\frac{11}{5}y = 22$ $y = \frac{22 \times 5}{11} = 10$ $y = \frac{22 \times 5}{10} = 12$ Hence, the larger number is 12. 166. If 10 is subtracted from the 5 times of a number, then that number? (a) 15 (b) 14 (c) 22 $x + y^2 = 52 - 428 = 100$ $x + y - \frac{100}{10} = 10$ 166. If 10 is subtracted from the 5 times of a number, then that number? (a) 12 (b) 12 (c) 22 (b) 18 x + y = 10 RBB RPF Constable - 25012019 (Shift-III Ans: (a) Let the number be x . According to the question, $x + y - \frac{100}{2} = x - 84 - 42$ 2x + 20 = 8x - 4 2x + 30 = 3x - 5 (c) 15 F (c) (d) 8 (c) 40 (c) (b) 380 (c) 12 (c) (h) 18 (c) 196 (d) 192 Rue RPF-SI - 13001/2019 (Shift-III According to the qu	The remaining part = $\frac{1}{3000} = \frac{1}{10}$	
number, the result is 30 less than the number. Find the number. (a) 105 (b) 140 (c) 120 (d) 210 REB_JE - 24/05/2019 (Shift-III) Ans : (d) Let the number be x. $x - \frac{x}{7} = x - 30$ $\frac{7x - x}{7} = x - 210$ x = 210 165. If the product of two numbers is 24, and their square's sum is 52, then find their sum. (a) 5 (b) 10 (c) 15 (d) 20 REB_RPF Constable - 24/01/2019 (Shift-III) Ans: (b) Let the number be x and y. $x + y^2 - 32(2)$ $\because (x + y)^2 - x^2 + y^2 + 2xy$ = 52 + 2x24 = 52 + 2x24 = 52 + 48 = 100 $x + y - \sqrt{100} = 10$ 166. If 10 is subtracted from the 5 times of a number, then that number will be quant to the number found when adding 8 to 4 times of that number, what is that number? (a) 15 (b) 12 (b) 18 (c) 22 (d) 21 REB_RPF Constable - 25/01/2019 (Shift-III) Ans: (a) 12 (b) 10 (c) 15 (d) 28 REB_RPF-SU-13/01/2019 (Shift-III) Ans: (a) Let the number be x , x = 15x = 375 second number Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of the larger of the two numbers is 22. Five times of the larger of the two numbers is 22. Five times of the larger of the two numbers is 22. Five times of the larger of the two numbers is 22. Five times of the larger of the two numbers is 22. Five times of the larger of the two numbers is 22. Five times of the larger o	164 If $1/7$ of a number is subtracted from the	According to the question,
Find the number: (a) 105 (b) 140 (c) 120 (d) 210 RB RE - 24/05/2019 (Shift-III Ans: (d) Let the number be x. $x - \frac{x}{7} = x - 30$ $\frac{7x - x}{7} = 2x - 210$ $\frac{7x - x}{7} = 2x - 210$ $\frac{7x - x}{7} = x^{-2} + 2x - 41$ $\frac{7x - x}{7} = x - 4x - 24$ $\frac{7x - 10}{7} = 4x + 8$ x - 130 $\frac{7x - x}{7} = x - 42$ $\frac{7x - 20}{7} = 20 - 8x - 4$ $\frac{7x - 10}{7} = 15x - 206 - 8x - 4$ $\frac{7x - 10}{7} = 15x - 206 - 8x - 4$ $\frac{7x - 10}{7} = 15x - 206 - 152$ $\frac{7x - 22}{7} = 12$ Hence, the sumber $x - 3x - 5x - 5x - 5x - 400$ $\frac{7x - 1}{7} = \frac{7x - 2}{7} = 22$ $\frac{7x - 2}{7} = 320$ $\frac{x - 32}{7} = 120$ Hence, the required number will be 12. Hence, the rumber $x - 3x - 5x - 5x - 5x - 400$ $\frac{7x - 1}{7} = \frac{7x - 2}{7} = 3$		
(a) 105 (b) 140 (c) 120 (c) 1210 RRB JE - 24/05/2019 (Shift-III) Ans : (a) Let the number be x. $x - \frac{x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ $\frac{7x - x}{6} = x - 210$ 165. If the product of two numbers is 24, and their square's sum is 52, then find their sum. (a) 5 (b) Let the numbers be x and y. According to the question, $x + y = \frac{7}{24}$ (1) $x + y = \frac{52}{2}$ (2) $\because (x + y)^2 = x^2 + y^2 + 2xy$ $= 52 + 4x^2 + 100$ $\frac{7x + x}{7} = 52$ (2) $\because (x + y)^2 = x^2 + y^2 + 2xy$ $= 52 + 4x^2 + 100$ $\frac{7x + y = \sqrt{100} = 10$ $\frac{7x + x}{2} + 2xy^2 + \frac{1}{25} = \frac{10}{2}$ (b) 15 (c) 15 (c) 12 $\frac{160}{2}$. If doubling a number and adding 20 to the result gives the same answer as multiplying the number by 8 and subtracting 4 from the result gives the same answer as multiplying the number by 8 and subtracting 4 from the result gives the same answer as multiplying the number. by 8 and subtracting 4 from the result gives the same answer as multiplying the number. by 8 and subtracting 4 from the result gives the same answer as multiplying the number. by 8 and subtracting 4 from the set (b) 12 $x + y = \sqrt{100} = 10$ $x + y = \sqrt{100} = 10$ x + x = 18 Hence, the required number will be 18. 167. When 8 times of a number is added to 4, the result obtained is the samalest 3-digit number. (a) 10 (b) 380 (c) 12 (c) 15 (d) 8 RRB RPF Constable -2201/2019 (Shift-III) Ans: (a) Let the number be x. x = 18 RB RPF Constable -2201/2019 (Shift-III) Ans: (a) Let the number be x. x = 25 first number: x = 15x = 15x = 15x Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of number: $x = \frac{1}{2} = \frac{12}{11}$ Hence, the required number will be 12. 168. The sum of two numbers, 122. Five times of or number is 32. Find the number be x, $x = \frac{1}{2} = \frac{2}{32}$ $x = 32 \times 6 = 192$		and $5x = 6y$ (ii)
RRB JE - 24/05/2019 (Shift-III)Ans: (d) Let the number be x. $x - \frac{x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ $\frac{5}{9} + y = 22$ $\frac{7x - x}{7} = x - 30$ $\frac{7x - x}{9} = x - 30$ (a) S(b) 10 $x = \frac{6}{5} \times 10 = 12$ 165. If the product of two numbers is 24, and their square's sum is 52, then find their sum.(a) 5(a) S(b) 10(c) 15(c) 10Ans: (b) Let the numbers be x and y.According to the question, $x, y = 24$ (1) $x^+ y = 52 + 2x24$ $= 52 + 2x24$ $= 52 + 48 = 100$ $x + y = \sqrt{100} = 10$ Ans. (b) Let the number, then that number?(a) 1 G.(b) 1 G(c) 2 (c) 2 (c		6
RRB JE - 24/05/2019 (Shift-III)Ans: (d) Let the number be x. $x - \frac{x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ $\frac{5}{9} + y = 22$ $\frac{7x - x}{7} = x - 30$ $\frac{7x - x}{9} = x - 30$ (a) S(b) 10 $x = \frac{6}{5} \times 10 = 12$ 165. If the product of two numbers is 24, and their square's sum is 52, then find their sum.(a) 5(a) S(b) 10(c) 15(c) 10Ans: (b) Let the numbers be x and y.According to the question, $x, y = 24$ (1) $x^+ y = 52 + 2x24$ $= 52 + 2x24$ $= 52 + 48 = 100$ $x + y = \sqrt{100} = 10$ Ans. (b) Let the number, then that number?(a) 1 G.(b) 1 G(c) 2 (c) 2 (c		$X = -\frac{1}{5}Y$
Ans: (d) Let the number be x. $x - \frac{x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ $\frac{11}{5} y = 22$ $\frac{7x - x}{7} = x - 30$ $\frac{7x - x}{7} = x - 30$ 165. If the product of two numbers is 24, and their sum. $y = 10$ (a) 5(b) 10 20 (c) 15(c) 15(d) 20Ans: (b) Let the numbers be x and y. $x - \frac{6}{5} \times 10 = 12$ According to the question, $x + \frac{y}{2} = 32$ $x, y - \frac{24}{2} = 2x, (1)$ $x + \frac{y}{2} = 32, (2)$ $(x + y)^2 = x^2 + y^2 + 2xy$ $= 52 + 2x^24$ $= 52 + 2x^24$ $= 52 + 2x^24$ $= 52 + 48 = 100$ $x + \frac{y}{\sqrt{100}} = 10$ 166. If 10 is subtracted from the 5 times of a number, then that number?(a) 15(a) 15(b) 18(c) 22(c) 21(a) 15(b) 18(c) 22(c) 21(a) 15(b) 18(b) 14 the number be x. $x = 18$ Hence, the required number will be 18.167. When 8 times of a number?(a) 12(b) 10(c) 15(d) 8 $x = 18$ Hence, the required number be x, $x = 18$ Hence, the required number will be 18.167. When 8 times of a number?(a) 12(b) 10(c) 15(d) 8 $x = 96 = 12$ 188. PF Constable -2201/2019 (Shift-II)188. The sum of two numbers is 22. Five times of a number is 32. Find the number.(a) 202(b) 198(c) 15(c) 15(d) 14^{e} of a number is 32. Find the number.(a) 202 <td< th=""><th></th><th>5</th></td<>		5
$\frac{x - \frac{x}{7} = x - 30}{\frac{7x - x}{7} = x - 30}$ $\frac{7x - x}{7} = x - 30$ $\frac{7x - 2x}{7} = x - 32$ $\frac{7x - 2x}{7} = x - 32$ $\frac{7x - 2x}{7} = 32$ \frac		
$\frac{7}{6k} - 7k - 210$ $\frac{7}{k} - 2k - $		$\int \frac{0}{2} y + y = 22$
$\frac{7}{6k} - 7k - 210$ $\frac{7}{k} - 2k - $	$x - \frac{x}{2} = x - 30$	5 5
$\frac{7}{6k} - 7k - 210$ $\frac{7}{k} - 2k - $	7	$11_{\rm W} = 22$
$\frac{7}{6k} - 7k - 210$ $\frac{7}{k} - 2k - $	7x - x	$\int \frac{1}{5} y = 22$
$\begin{array}{c} 9x = 7x - 210 \\ x = 210 \\ \hline \\ x = 210 \\ \hline \\ 15. If the product of two numbers is 24, and their sum. (a) 5 (b) 10 \\ \hline \\ (a) 5 (c) 15 (c) 10 \\ \hline \\ Ans: (b) Let the numbers be x and y. \\ According to the question, (b) 4 \\ x^2 + y^2 = 52, \dots, (2) \\ \because (x + y)^2 = x^2 + y^2 + 2xy \\ = 52 + 2x24 \\ = 52 + 48 = 100 \\ x + y = \sqrt{100} = 10 \\ \hline \\ 16. If 10 is subtracted from the 5 times of a number, then that number? will be equal to the number be x. According to the question, 2x + 20 = 8x - 4 \\ 2x = 20 = $	$\frac{1}{7} = x - 30$	22×5
$x = 210$ 165. If the product of two numbers is 24, and their square's sum is 52, then find their sum. (a) 5(b) 10(a) 5(b) 10(c) 15(d) 20 RRB RPF Constable -24/01/2019 (Shift-II Ans: (b) Let the numbers be x and y. According to the question, $x, y = 24$ (1) $x + y^2 = 52$ (2)(b) 4(c) 15(c) 16(c) 6(d) 2(c) $x + y^2 = 52$ (2)(e) 42(f) 4(c) $x + y = \sqrt{100} = 10$ RRB JE - 25/05/2019 (Shift-II 166. If 10 is subtracted from the 5 times of a number, then that number? (a) 15(d) 18(a) 15(b) 18(c) 6(c) 22(c) 15(d) 21(a) 15(b) 18(b) 1ct the number be x.(a) 4005x - 10 = 4x + 8 x = 18 Hence, the required number will be 18.167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number; (a) 12(b) 10(c) 15(d) 4(d) 12(b) 10(c) 15(d) 4(d) 12(b) 10(c) 15(d) 4(d) 12(b) 10(e) 15(f) 4(f) The smallest 3-digit number = 100According to the question, $x = 48$ $x = 46$ $x = 15x = 15 \times 25 = 375$ second number $x = 15x = 25 = 375$ $x^2 = 636$ $x = 46$ $x = 46$ <t< th=""><th>1</th><th>$y = \frac{22 \times 5}{11} = 10$</th></t<>	1	$y = \frac{22 \times 5}{11} = 10$
165. If the product of two numbers is 24, and their square's sum is 52, then find their sum. (a) 5(b) 10 (c) 15(c) 15(c) 10(a) 5(b) 10 (c) 15(c) 20RB RPF Constable -24/01/2019 (Shift-IIAns :(b) Let the numbers be x and y. According to the question, $x^2 + y^2 = 52(2)$ (c) 6If doubling a number and adding 20 to the result gives the same answer as multiplying the number by 8 and subtracting 4 from the product, find the number. (a) 3(c) 6(a) 5(b) 10 (c) 6(c) 6(d) 2(c) 15(b) 10 (c) 12(c) 6(d) 2(a) 15(b) 18 (c) 22(d) 21Ans. (b) : Let the number be x. According to the question, $x + y = \sqrt{100} = 10$ (c) 425According to the question, $x + 18$ Hence, the required number is added to 4, the result obtained is the smallest 3-digit number: (d) 12(b) 10 (c) 12Ans: (a) 12(b) 10 (c) 15(d) 8(a) 12(b) 10 (c) 15(d) 8According to the question, $x + 18$ Hence, the required number is added to 4, the $x = 18$ Ans: (a) 12(b) 10 (c) 15According to the question, $x = 15 \times 25 = 375$ (a) 12(b) 10 (c) 15(b) 12(b) 10 (c) 15(c) 12(b) 10 (c) 15(a) 12(b) 10 (c) 15(a) 12(b) 10 (c) 15(b) 12(c) 15(c) 15(d) 8(d) 12(b) 10 (c) 15(e) 12(b) 10 (c) 15(f) Her the number be x, (c) 15(g) 12(b)		1
square's sum is 52, then find their sum. (a) 5 (b) 10 (c) 15 (d) 20 RRB RPF Constable -24/01/2019 (Shift-I) Ans: (b) Let the numbers be x and y. According to the question, $x, y = 24, \dots, (1)$ $x' + y' = 52, \dots, (2)$ \because (x + y' = 52, \dots, (2) \because (x + y' = 2x + 2x		
(a) 5(b) 10(c) 15(d) 20 RRB RPF Constable -24/01/2019 (Shift-IAccording to the question, $x, y = 24, \dots, (1)$ $x + y^2 = s^2 + y^2 + 2xy$ $= 52 + 2x^2 = 32 + 48 = 100$ $x + y = \sqrt{100} = 10$ 166. If 10 is subtracted from the 5 times of a number, then that number will be equal to the number found when adding 8 to 4 times of that number, what is that number? 166. If 10 is subtracted from the 5 times of a number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that number found when adding 8 to 4 times of that $x = 18$ Hence, the required number will be 18. 167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number. $x = 18$ $x = 100$ $x = \frac{9}{8} = 12$ Hence, the required number be x , $x = 4 = 100$ $x = \frac{9}{8} = 12$ Hence, the required number is 22. Five times of $x = \frac{9}{8} = 12$ Hence, the required number is 22. Five times of $x = \frac{9}{8} = 12$ Hence, the required number is 22. Five times of $x = \frac{9}{8} = 12$ Hence, the required number will be 12. <t< th=""><th></th><th>x = -12</th></t<>		x = -12
(c) 15 (d) 20 RBR PFC constable -24/01/2019 (Shift-I) According to the question, $x^2 + y^2 = 52(2)$ $\therefore (x + y)^2 = x^2 + y^2 + 2xy$ = 52 + 2x + 24 = 52 + 2x + 24 = 52 + 2x + 24 = 52 + 48 = 100 $x + y = \sqrt{100} = 10$ 166. If 10 is subtracted from the 5 times of a number, then that number will be equal to at number, then that number? What is that number? (a) 15 (b) 18 (c) 22 (c) 21 RBR BPF Constable -25/01/2019 (Shift-II) Ans. (b) 1. Let the number be x. According to the question, 5x - 10 = 4x + 8 x = 18 Hence, the required number is added to 4, the result obtained is the smallest 3-digit number. RBR BPF Constable -22/01/2019 (Shift-II) Ans. (a) Let the number be x. According to the question, 5x - 10 = 4x + 8 x = 18 Hence, the required number is added to 4, the result obtained is the smallest 3-digit number. (a) 12 (b) 10 (c) 15 (d) 8 RBR BPF Constable -22/01/2019 (Shift-II) Ans : (a) Let the number be x. (a) 400 (b) 380 (c) 425 (d) 395 RAS LET - 3005/2019 (Shift-II) Ans : (a) Let the number be x. (b) 12 (c) 15 (d) 8 RB BPF Constable -22/01/2019 (Shift-II) Ans : (a) Let the number be x. (c) 15 (d) 28 x = -3075 $x^2 = 627$ x = -25 first number: (a) 20 (b) 198 (c) 196 (d) 192 RB RPF Solution , $x \times \frac{1}{2}x^2 = 32$ x = 36 RB RPF Solution (c) 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.		5 12
RRB RPF Constable -24/01/2019 (Shift-IIAns: (b) Let the numbers bax and y.According to the question, $x, y = 24$ (1) $x, y = 24$ (2) $(x + y)^2 = x^2 + y^2 + 2xy$ $= 52 + 2x24$ $= 52 + 2x24$ $= 52 + 48 = 100$ $x + y = \sqrt{100} = 10$ 166. If 10 is subtracted from the 5 times of anumber, then that number will be equal to thenumber, what is that number?(a) 15(b) 15(c) 22(a) 15(b) 15(c) 22(d) 15Ans. (b): Let the number be x.According to the question, $x = 18$ Hence, the required number is added to 4, theresult obtained is the smallest 3-digit number.What is that number?(a) 12(b) 10(c) 15(d) 12(b) 12(b) 10(c) 15(d) 8RRB RPF Constable -22/01/2019 (Shift-II)Ans: (a) Let the number be x.x: 15x = 9375(a) 12(b) 10(c) 15(a) 12(b) 10(c) 15(a) 12(b) 10(c) 15(d) 12RB RPF Constable -22/01/2019 (Shift-II)Ans: (a) Let the number bax,.: The smallest 3-digit number:.: The smallest 3-digit number:(a) 12(b) 10(c) 15(c) 16(d) 21RB RPF Constable -22/01/2019 (Shift-II)According to the question,<		Hence, the larger number is 12.
Ans: (b) Let the number is be x and y.According to the question, $x, 2+y^2 = 52(2)$ (1) $x^2 + y^2 = 52(2)$ $(x + y)^2 = x^2 + y^2 + 2xy$ $= 52 + 2x + 24$ $= 52 + 48 = 100$ $x + y = \sqrt{100} = 10$ (a) 3 (b) 4 (c) 6 (d) 2166. If 10 is subtracted from the 5 times of a number, then that number will be equal to the number found when adding 8 to 4 times of that number, then that number?(a) 3 (b) 4 (c) 6 (c) 6 (c) 12(a) 15 (c) 22 (d) 21 (a) 15 (b) 18 (c) 22 (d) 21(b) 18 (c) 22 (d) 21(c) 425 (d) 395 (c) 425 (d) 395According to the question, $5x - 10 = 4x + 8$ $x = 18$ Hence, the required number is added to 4, the result obtained is the smallest 3-digit number. What is that number? (a) 12 (b) 10 (c) 15 (d) 8 $x = 26$ (c) 15 (d) 8 $x = 96$ (a) 400 (b) 380 (c) 425 (d) 395 (c) 425 (d) 395 (c) 425 (d) 395 (c) 425 (d) 395 (c) 15 (c) 15 (d) 8 $x = 25$ first number. (b) 10 (c) 15 (d) 8 $x = 96$ $x = 96$ $x = \frac{96}{8} = 12$ Hence, the required number will be 12.168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers(a) 202 (b) 198 (c) 196 (d) 192 (c) 196 (d) 192		169. If doubling a number and adding 20 to the
According to the question, $x, y = 24, \dots, (1)$ $x + y^2 = 52, \dots, (2)$ $\therefore (x + y)^2 = x^2 + y^2 + 2xy$ $= 52 + 2x_24$ $= 52 + 2x_24$ = 52 + 48 = 100 $x + y = \sqrt{100} = 10$ 166. If 10 is subtracted from the 5 times of a number, then that number? (a) 15 (b) 18 (c) 22 (c) 21 (c) 22 (c) 21 (c) 22 (c) 21 (c) 22 (c) 21 (c) 22 (c) 21 (c) 15 (c) 18 Hence, the required number will be 18. 167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number. (a) 400 (b) 380 (c) 425 (c) 425 (c) 380 (c) 425 (c) 420 (c) 420 (c) 425 (c) 380 (c) 426 (c) 395 (c) 15 (c) 18 (x = 96 (x = $\frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Hence, the required number will be 12. Hence, the required number is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Hence the required number is 22. Five times of one number is equal to 6 times the other. Find the larger of t		result gives the same answer as multiplying the
$x, y = 24, \dots, (1)$ $x^{2} + y^{2} = 52, \dots, (2)$ $(a) 3 (b) 4$ $(c) 6 (d) 2$ $RB JE - 25/05/2019 (Shift-II)$ $(a) 5 (b) 18 (c) 22 (d) 21$ $RB B PF Constable -25/01/2019 (Shift-III)$ Ans. (b) 1. Let the number be x. According to the question, $x + y = \sqrt{100} = 10$ 170. The product of two numbers is 9375. The quotient, when the largest number is 0 380 (c) 42 = 6x 2x + 20 = 8x - 4 $24 = 6x$ $2x + 20 = 8x - 4$ $24 = 6x$ $32 + 20 = 8x - 4$ $32 + 20 = 8x - 4$ $24 = 6x$ $32 + 20 = 8x - 4$ $32 + 20 = 8x - 4$ $24 = 6x$ $32 + 20 = 8x - 4$ $24 = 6x$ $32 + 20 = 8x - 4$ $24 = 6x$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 20 = 10$ $32 + 10 + 10 + 10 + 10 + 10$		number by 8 and subtracting 4 from the
$\frac{(x + y)^2 = x^2 + y^2 + 2xy}{x = 52 + 2x^2 + x^2 + x$	x = 24 (1)	product, find the number.
$\frac{(x + y)^2 = x^2 + y^2 + 2xy}{x = 52 + 2x^2 + x^2 + x$	$x^{2} + y^{2} = 52$ (2)	
$= 52 + 2\times 24$ $= 52 + 48 = 100$ $x + y = \sqrt{100} = 10$ 166. If 10 is subtracted from the 5 times of a number, then that number will be equal to the number found when adding 8 to 4 times of that number, what is that number? (a) 15 (b) 18 (c) 22 (d) 21 RB BPF Constable -25/01/2019 (Shift-III) Ans. (b) : Let the number be x. According to the question, 5x - 10 = 4x + 8 x = 18 Hence, the required number will be 18. 167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number: What is that number? (a) 12 (b) 10 (c) 15 (d) 8 RB BPF Constable -22/01/2019 (Shift-II) Ans: (a) Let the number be x. x = 18 Hence, the required number will be 18. 167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number: What is that number? (a) 12 (b) 10 (c) 15 (d) 8 RB BPF Constable -22/01/2019 (Shift-II) Ans: (a) Let the number be x. x = 18 Hence, the required number will be 18. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Hence, the required number will be 12. Hence, the required number will be 12. Hence, 		
$ \begin{array}{c} = 52 + 48 = 100 \\ x + y = \sqrt{100} = 10 \\ \hline x + y = \sqrt{10} = 12 \\ \hline x + y = \sqrt{10} = 12 \\ \hline x + y = \sqrt{100} = 12 \\ \hline x + y = \sqrt{100} = 12 \\ \hline x + y = \sqrt{10}$		
$x + y = \sqrt{100} = 10$ 166. If 10 is subtracted from the 5 times of a number, then that number will be equal to the number, what is that number?(a) 15(b) 18(c) 22(d) 21 RB RPF Constable -25/01/2019 (Shift-III)Ans. (b) : Let the number be x. According to the question, $5x - 10 = 4x + 8$ $x = 18$ Hence, the required number will be 18. 170. The product of two numbers is 9375. The quotient, when the largest number is divided by the smallest number is 15. Find the sum of the sum of the question, $5x - 10 = 4x + 8$ $x = 18$ Hence, the required number will be 18. 170. The product of two numbers is 9375. The quotient, when the largest number is divided by the smallest number is 15. Find the sum of the sum of the question, $x = 18$ Hence, the required number is added to 4, the result obtained is the smallest 3-digit number? (a) 12 (b) 10 (c) 15 (c) 15 (d) 8 Ans : (a) Let the number be x , \therefore The smallest 3-digit number = 100 According to the question, $8x + 4 = 100$ $8x = 96$ $x = \frac{96}{8} = 12$ Hence, the required number will be 12. Are 96 $x = \frac{96}{8} = 12$ Hence, the required number will be 12. Are 96 $x = \frac{96}{8} = 12$ Hence, the required number will be 12. Are 96 $x = \frac{96}{8} = 12$ Hence, the required number sis 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Are 96 $x = 32 \times 6 = 192$		
166. If 10 is subtracted from the 5 times of a number, then that number will be equal to the number, what is that number? $2x + 20 = 8x - 4$ $24 = 6x$ (a) 15(b) 18(c) 22(d) 21 Ans. (b) 1. Let the number be x. According to the question, $5x - 10 = 4x + 8$ $x = 18$ Hence, the required number will be 18.167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number?(a) 12(b) 10 (c) 15(a) 12(b) 10 (c) 15(c) 15(d) 8 RB RPF Constable -22/01/2019 (Shift-II)Ans : (a) Let the number be x, · The smallest 3-digit number = 100 According to the question, 8x + 4 = 100 8x + 96 $x = \frac{96}{8} = 12$ Hence, the required number will be 12.168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.		
24 = 6xa number, then that number will be equal to the number, what is that number?(a) 15(b) 18(c) 22(d) 21 RB BPF Constable -25/01/2019 (Shift-III) Ans. (b) : Let the number be x. According to the question, $5x - 10 = 4x + 8$ $x = 18$ Hence, the required number will be 18.167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number. What is that number? (a) 12Ans. (a) Let the smaller number be $= x$ \therefore Larger number $= 15x$ According to the question, $x = 15x = 9375$ $15x^2 = 9375$ $x^2 = 625$ $\therefore 15x = 15 \times 25 = 375$ second number $\therefore 15x = 15 \times 25 = 375$ second number $\therefore 15x = 15 \times 25 = 375$ second number $\therefore 15x = 15 \times 25 = 375$ second number $\therefore 15x = 15 \times 25 = 375$ second number $\therefore 15x = 15 \times 25 = 375$ second number $\therefore 15x = 15 \times 25 = 375$ second number $\therefore 125x = 15 \times 25 = 375$ $x^2 = 625$ $x = 25$ first number $\therefore 125x = 15 \times 25 = 375$ second number $\therefore 125x = 15 \times 25 = 375$ second number $\therefore 125x = 15 \times 25 = 375$ $x = 25 = 400$ Ans: (a) Let the number be x, $\therefore The smallest 3-digit number = 100$ $x = 96$ $x = 12$ Mans: (d) Let the number be x, $According to question,$ $x x \frac{1}{4} \times \frac{2}{3} = 32x = 32 \times 6 = 192Item of two numbers, is 22. Five times ofx = 32 \times 6 = 192$	$x + y = \sqrt{100} = 10$	
Intimiter, what it number found when adding 8 to 4 times of that number, what is that number?(a) 15(b) 18(c) 22(d) 21 RRB RPF Constable -25/01/2019 (Shift-III)Ans. (b) : Let the number be x. According to the question, $5x - 10 = 4x + 8$ $x = 18$ Hence, the required number will be 18. 167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number. What is that number? (a) 12(b) 10 (c) 15 Ans. (a) Let the number be x. $:$ The smallest 3-digit number? (a) 12(b) 10 (c) 15 Ans. (a) Let the number be x. $:$ The smallest 3-digit number = 100 According to the question, $8x + 4 = 100$ $8x = 96$ $x = 96$ $8 = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. X and the number be x, $x = \frac{1}{2} = 32$ $x = \frac{1}{2} = 32 x = 32 \times 6 = 192$	166. If 10 is subtracted from the 5 times of a	
number, what is that number?(a) 15(b) 18(c) 22(d) 21 RRB RPF Constable -25/01/2019 (Shift-III)Ans. (b) : Let the number be x.According to the question, $5x - 10 = 4x + 8$ $x = 18$ Hence, the required number will be 18. 167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number? (c) 15 Ans : (a) 12(b) 10 (c) 15(a) 12(b) 10 (c) 15(c) 15(d) 8 $x = 96$ RRB RPF Constable -22/01/2019 (Shift-II)Ans : (a) Let the number be x, \therefore The smallest 3-digit number = 100 According to the question, $x = 4 = 100$ According to the question , $8x = 96$ $x = \frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.	number, then that number will be equal to the	24 = 6x
(a) 15 (b) 18 (c) 22 (d) 21 RRB RPF Constable -25/01/2019 (Shift-III) Ans. (b) : Let the number be x. According to the question, 5x - 10 = 4x + 8 x = 18 Hence, the required number will be 18. 167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number. What is that number? (a) 12 (b) 10 (c) 15 (d) 8 RRB RPF Constable -22/01/2019 (Shift-II) Ans: (a) Let the number be x, \therefore Larger number $= 15x$ According to the question, $x \times 15x = 9375$ $x^2 = 625$ (c) 15 (d) 8 RRB RPF Constable -22/01/2019 (Shift-II) Ans: (a) Let the number be x, \therefore The smallest 3-digit number $= 100$ According to the question, 8x + 4 = 100 $x = \frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. i $x = 32 \times 6 = 192$	number found when adding 8 to 4 times of that	$\mathbf{x} = 4$
(a) 15 (b) 18 (c) 22 (d) 21 RRB RPF Constable -25/01/2019 (Shift-III) Ans. (b) : Let the number be x. According to the question, 5x - 10 = 4x + 8 x = 18 Hence, the required number will be 18. 167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number. What is that number? (a) 12 (b) 10 (c) 15 (d) 8 RRB RPF Constable -22/01/2019 (Shift-II) Ans : (a) Let the number be x. \therefore Larger number = 15x According to the question, $x \times 15x = 9375$ $x^2 = 625$ x = 25 first number $\therefore 15x = 15 \times 25 = 375 \text{ second number}$ Hence , the number be x, \therefore The smallest 3-digit number = 100 According to the question, 8x + 4 = 100 8x = 96 $x = \frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Area Star Star Star Star Star Star Star Sta	number, what is that number?	170. The product of two numbers is 9375. The
(c) 22 (d) 21 RRB RPF Constable -25/01/2019 (Shift-III) Ans. (b) : Let the number be x. According to the question, 5x - 10 = 4x + 8 x = 18 Hence, the required number will be 18. 167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number. What is that number? (a) 12 (b) 10 (c) 15 (d) 8 RRB RPF Constable -22/01/2019 (Shift-II) Ans: (a) Let the number be x, \therefore The smallest 3-digit number = 100 According to the question, 8x + 4 = 100 8x = 96 $x = \frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. by the smallest number is 15. Find the sum of the sum of the number is 15. Find the sum of the sum of the number is 15. Find the sum of the sum of the sum of the number be x. (a) 400 (b) 380 (c) 425 (d) 395 RRB JE - 30/05/2019 (Shift-III Ans: (a) Let the smallest 3-digit number. $x = 15x^2 = 9375$ $x^2 = 625$ x = 25 first number $\therefore 15x = 15 \times 25 = 375$ second number Hence, the sum of the number is 32. Find the number is 32. Find the number. (a) 202 (b) 198 (c) 196 (d) 192 RRB RPF-SI -13/01/2019 (Shift-III Ans: (d) Let the number be x, According to question, $x \times \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$		
RRB RPF Constable -25/01/2019 (Shift-III)Ans. (b) : Let the number be x. According to the question, $5x - 10 = 4x + 8$ $x = 18$ Hence, the required number will be 18.(a) 400 (b) 380 (c) 425 (c) 395167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number. What is that number? (a) 12 (c) 15 (c) 16 (c) 15 (c) 16 (c) 16 (c) 17these numbers.Ans: (a) Let the number? $15x^2 = 9375$ $15x^2 = 9375$ $x^2 = 625$ $x = 25$ first number \therefore $15x = 15 \times 25 = 375$ second number Hence, the sum of the question, $8x + 4 = 100$ $8x = 96$ $x = \frac{96}{8} = 12$ Hence, the required number will be 12.(a) 202 (b) 198 (c) 196 (d) 192 RRB RPF-SI -13/01/2019 (Shift-III Ans: (d) Let the number be x, According to question, $x \times \frac{1}{4} \times \frac{2}{3} = 32$ $4 \times \frac{3}{3}$ $x = 32 \times 6 = 192$		by the smallest number is 15. Find the sum of
According to the question, 5x - 10 = 4x + 8 x = 18 Hence, the required number will be 18. 167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number. What is that number? (a) 12 (b) 10 (c) 15 (d) 8 RRB RPF Constable -22/01/2019 (Shiff-II) Ans: (a) Let the number be x, \therefore The smallest 3-digit number = 100 According to the question, 8x + 4 = 100 8x = 96 $x = \frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. According to the question , 8x + 4 = 100 8x = 96 $x = \frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. According to the question , $x = 32 \times 6 = 192$	RRB RPF Constable -25/01/2019 (Shift-III)	
Sx - 10 = 4x + 8 x = 18 Hence, the required number will be 18. RRB JE - 30/05/2019 (Shift-IIArs : (a) Let the required number is added to 4, the result obtained is the smallest 3-digit number: What is that number? (a) 12 (b) 10 (c) 15 (d) 8 RRB RPF Constable -22/01/2019 (Shift-II)Ans : (a) Let the number be x, \therefore The smallest 3-digit number = 100 According to the question, $8x = 96$ Ars : (a) Let the number be x, \therefore The smallest 3-digit number = 100 According to the question, $8x = 96$ RRB RPF Constable -22/01/2019 (Shift-II)RB RPF Constable -22/01/2019 (Shift-II)Ans : (a) Let the number be x, \therefore The smallest 3-digit number = 100 According to the question, $8x = 96$ RRB RPF-SI : 100 RCC (d)According to the question , $8x = 96$ RRB RPF-SI : 13/01/2019 (Shift-III) RB RPF-SI : 13/01/2019 (Shift-III) Are : 96 (c) 196 (c) 196 (c) 196 According to the question , $8x = 96$ According to the number is 32. Find the number. (c) 196 (d) 192 RB RPF-SI : 13/01/2019 (Shift-III) Ans : (d) Let the number be x, (c) 196 (d) 192 RB RPF-SI : 13/01/2019 (Shift-III) According to question , $x = \frac{1}{4} = 32$ $x = 32 \times 6 = 192$		
x = 18 Hence, the required number will be 18. Ans : (a) Let the required number is added to 4, the result obtained is the smallest 3-digit number. What is that number? (a) 12 (b) 10 (c) 15 (c) 15 (d) 8 RRB RPF Constable -22/01/2019 (Shift-II)Ans : (a) Let the number be x, $x^2 = 625$ $x = 25$ first number $15x = 15 \times 25 = 375$ second number Hence, the number be x, $x = 96$ $x = \frac{96}{8} = 12$ Hence, the required number will be 12. Ans : (a) Let the number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.Five times of $x = 32 \times 6 = 192$	According to the question,	(c) 425 (d) 395
Hence, the required number will be 18.168. The sum of two numbers is equal to 6 times the other. Find the larger of the two numbers.Hence, the required number will be 12.Hence, the required number sis 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.Ide the two numbers.Hence, the required number will be 12.Hence, the required number will be 12.Hence, the required number is equal to 6 times the other. Find the larger of the two numbers.Ide the two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.Ide the two numbers.Hence, the required number will be 12.Ide the two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.Ide the two numbers.Ide the two numbers.Ide the two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.Ide the two numbers.Ide the two numbers.Ide the two numbers is 22. Five times of one numbe		RRB JE - 30/05/2019 (Shift-II)
167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number. What is that number? (a) 12 (b) 10 (c) 15 (d) 8 RRB RPF Constable -22/01/2019 (Shift-II)According to the question, $x = 25$ first number \therefore 15x = 15 × 25 = 375 second number Hence, the number be x, \therefore The smallest 3-digit number = 100 According to the question, $8x + 4 = 100$ $8x = 96$ $x = \frac{96}{8} = 12$ Hence, the required number will be 12.According to the question, $x = \frac{96}{8} = 12$ Hence, the required number is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.According to the question, $x = 32 \times 6 = 192$ 168. The sum of two numbers.22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.Five times of $x = 32 \times 6 = 192$		Ans : (a) Let the smaller number be $= x$
result obtained is the smallest 3-digit number. What is that number? (a) 12 (b) 10 (c) 15 (d) 8 RRB RPF Constable -22/01/2019 (Shift-II) Ans : (a) Let the number be x, \therefore The smallest 3-digit number = 100 According to the question, 8x + 4 = 100 8x = 96 $x = \frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. Find the larger of the two numbers. $x = 32 \times 6 = 192$		\therefore Larger number = 15x
What is that number?(a) 12(b) 10(c) 15(d) 8 RRB RPF Constable -22/01/2019 (Shift-II)Ans : (a) Let the number be x, \therefore The smallest 3-digit number = 100 According to the question, $8x + 4 = 100$ According to the question, $8x = 96$ $15x^2 = 9375$ $x = 25 first numberx = \frac{96}{8} = 12Hence, the required number will be 12.15x^2 = 9375x = 25 first number168. The sum of two numbers is 22. Five times ofone number is equal to 6 times the other. Findthe larger of the two numbers.15x^2 = 9375x = 25 first numberImage: State of the two numbers is 22. Five times ofx = 32 \times 6 = 192$		
(a) 12 (b) 10 (c) 15 (d) 8 RRB RPF Constable -22/01/2019 (Shift-II) Ans : (a) Let the number be x, \therefore The smallest 3-digit number = 100 According to the question, 8x + 4 = 100 8x = 96 $x = \frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. 171. If $2/3^{rd}$ of $1/4^{th}$ of a number is 32. Find the number. (a) 202 (b) 198 (c) 196 (d) 192 RRB RPF-SI -13/01/2019 (Shift-III) Ans : (d) Let the number be x, According to question, $x \times \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$		
(c) 15(d) 8 RRB RPF Constable -22/01/2019 (Shift-II)Ans : (a) Let the number be x, \because The smallest 3-digit number = 100 According to the question, $8x + 4 = 100$ $8x = 96$ $x = \frac{96}{8} = 12$ $x = \frac{25}{13}$ first number Hence, the sum of the number is 32. Find the number. (a) 202 (b) 198 (c) 196 (c) 196 (d) 192 Ans : (d) Let the required number will be 12. Ans : (d) Let the number be x, According to question, $x \times \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$		$15x^2 = 9375$
RRB RPF Constable -22/01/2019 (Shift-II)Ans : (a) Let the number be x, \therefore The smallest 3-digit number = 100 According to the question, $8x + 4 = 100$ $8x = 96$ $x = \frac{96}{8} = 12$ $\therefore 15x = 15 \times 25 = 375$ second number Hence, the sum of the numbers is 32. Find the number. (a) 202 (b) 198 (c) 196 (d) 192 Ans : (d) Let the number will be 12. Ans : (d) Let the number be x, According to question, $x \times \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$		
Ans : (a) Let the number be x, \therefore The smallest 3-digit number = 100 According to the question, $8x + 4 = 100$ $8x = 96$ $x = \frac{96}{8} = 12$ Hence, the required number will be 12.Hence, the sum of the numbers = $375 + 25 = 400$ 171. If $2/3^{rd}$ of $1/4^{th}$ of a number is 32. Find the number. (a) 202 (b) 198 (c) 196 (d) 192 RRB RPF-SI -13/01/2019 (Shift-III)Ans : (d) Let the number be x, According to question, $x + \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$		
$\therefore \text{ The smallest 3-digit number } = 100$ According to the question, $8x + 4 = 100$ $8x = 96$ $x = \frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. 171. If 2/3 rd of 1/4 th of a number is 32. Find the number. (a) 202 (b) 198 (c) 196 (d) 192 RRB RPF-SI -13/01/2019 (Shift-III) Ans : (d) Let the number be x, According to question, $x \times \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$		
According to the question, 8x + 4 = 100 8x = 96 $x = \frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. 11. The value of the two number is 0.17 for the number. (a) 202 (b) 198 (c) 196 (d) 192 RRB RPF-SI -13/01/2019 (Shift-III Ans : (d) Let the number be x, According to question, $x \times \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$		
$8x + 4 = 100$ $8x = 96$ (a) 202 (b) 198 (c) 196 (c) 196 (d) 192 RRB RPF-SI -13/01/2019 (Shift-III) $x = \frac{96}{8} = 12$ Hence, the required number will be 12.(a) 202 (c) 196(b) 198 (c) 196 (c) 196 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers.(a) 202 (c) 196(b) 198 (c) 196 $x \times \frac{1}{2} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$ $x \times \frac{1}{2} \times \frac{2}{3} = 32$ (c) $x = 32 \times 6 = 192$	e	
$8x = 96$ $x = \frac{96}{8} = 12$ Hence, the required number will be 12.168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. $x = \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$		
$x = \frac{96}{8} = 12$ Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. $x = \frac{12}{4} \times \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$		
$x = \frac{50}{8} = 12$ Hence, the required number will be 12.168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. $x = \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$		
Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. $x \times \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$	$x = \frac{96}{12} = 12$	
Hence, the required number will be 12. 168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. $x \times \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$	$\Lambda - \frac{1}{8} = 12$	
168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find the larger of the two numbers. $x \times \frac{1}{4} \times \frac{2}{3} = 32$ $x = 32 \times 6 = 192$		
the larger of the two numbers. $x = 32 \times 6 = 192$		$\frac{1}{1} = \frac{1}{2} = 32$
the larger of the two numbers. $x = 32 \times 6 = 192$		$11 \frac{3}{4} 3^{-52}$
		$x = 32 \times 6 = 192$
	_	

 172. If the sum of two numbers is 13 and the sum of their squares is 97, what is their product? (a) 72 (b) 36 (c) 110 (d) 84 RRB JE - 28/06/2019 (Shift-III) 	reciprocals is 1/2. One of the number is. (a) 2 (b) 4 (c) 5 (d) 6 RRB Group-D – 17/09/2018 (Shift-III)
Ans. (b) Let both the numbers are X and Y.	Ans. (d) : Let the first number be x and the second
Given,	number be y. According to the question,
$x + y = 13$, and $x^2 + y^2 = 97$, $xy = ?$ $\therefore (x + y)^2 = x^2 + y^2 + 2xy$ (i)	x + y = 9(i)
On putting the values in equation (i),	
$(13)^2 = 97 + 2xy$	$\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$ (ii)
169 = 97 + 2xy	From equation (i),
2xy = 169 - 97	x + y = 9
$xy = \frac{72}{2}$	y = 9 - x
2	From equation (ii)
xy = 36	$\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$
173. Which of the fraction given below, when added	
to $\frac{13}{5}$, gives 1?	$\frac{x+y}{xy} = \frac{1}{2}$
(a) $-\frac{48}{30}$ (b) $-\frac{7}{5}$	$\frac{9 \times 2}{1} = 1$
	xy
(c) $-\frac{28}{10}$ (d) $-\frac{8}{15}$	$2 \times 9 = xy$ On putting the value of y,
	18 = x (9 - x)
RRB Group-D – 19/09/2018 (Shift-II) Ans. (a) : Let the fraction be x.	18 = x (9 - x) $18 = 9x - x^{2}$
According to the question,	$x^{2} - 9x + 18 = 0$
	$x^{2}-6x-3x+18=0x(x-6)-3(x-6)=0$
$x + \frac{13}{5} = 1$	(x-3) (x-6) = 0
13	(x-3) = 0 or $x = 3$
$x = 1 - \frac{13}{5}$	(x-6) = 0 or x = 6
-8	176. If the sum of two numbers is 26 and their differences is 12. Find the differences of their
$x = \frac{-8}{5}$	difference is 12. Find the difference of their squares.
-8×6 -48	(a) 296 (b) 312
or , $x = \frac{-8 \times 6}{5 \times 6} = \frac{-48}{30}$	(c) 324 (d) 336
174. Shalini, Tanvir and Rashid shared a cake.	RRB NTPC 05.04.2016 Shift : 2 Ans : (b) Let the numbers be x and y.
Shalini had $\frac{1}{4}$ part of it, Tanvir had $\frac{1}{4}$ part of	
0 4	x - y = 12
it and Rashid had the remaining part. What	
was fraction of Rashid's cake?	$= x^{2} - y^{2}$ = (x + y) (x - y)
(a) $\frac{5}{6}$ (b) $\frac{5}{5}$	$= 26 \times 12 = 312$
(a) $\frac{5}{6}$ (b) $\frac{3}{5}$ (c) $\frac{13}{15}$ (d) $\frac{7}{12}$	177. If the product of two numbers is thrice of their sum, if 1 st number is 12 find the 2 nd number.
(c) $\frac{13}{15}$ (d) $\frac{7}{12}$	sum, if 1 st number is 12 find the 2 nd number.
RRB Group-D – 31/10/2018 (Shift-II)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	RRB NTPC 04.04.2016 Shift : 1
Ans : (d) Shalini's share of the cake $=\frac{1}{6}$ part	Ans : (c) Let the 2^{nd} number be x.
Tanyir's share of the cake $-\frac{1}{2}$ part	$\mathbf{x} \times 12 = (\mathbf{x} + 12) \times 3$
Tanvir's share of the cake $=\frac{1}{4}$ part	12x = 3x + 36 9x = 36
Total share of Shalini and Tanvir's cake	$\begin{array}{l} 9x - 30 \\ \text{Hence, } x = 4 \end{array}$
$=\frac{1}{6}+\frac{1}{4}=\frac{2+3}{12}=\frac{5}{12}$	178. Two partners M and N buy a car. M pays his
6 4 12 12	share of $\frac{3}{7}$ th of the total cost of the car. M pays
Hence, Rashid's share of the cake $=1-\frac{5}{12}=\frac{7}{12}$ part	1
12 part	₹31,540 less as compared to N. What is the cost
	of the car?

(a) ₹2,32,680(b) ₹2,03,175(c) ₹2,20,780(d) ₹1,85,780	Ans : (b) The smallest 4 digit number = 1000 32
RRB ALP & Tec. (31-08-18 Shift-III)	
Ans : (c) Let the cost of the car is $\overline{\mathbf{x}}$	3 1000
According to the question,	$\frac{+3}{62} = \frac{9}{100}$
M's share $=\frac{3x}{7}$	62 100
,	$\frac{2}{2}$ 124
N's share $=\frac{3x}{7} + 31540$	
,	Hence, the smallest 4 digit perfect square number = $1000 + 24 = 1024$
Then, $\frac{3x}{7} + 31540 + \frac{3x}{7} = x$	
, , , , , , , , , , , , , , , , , , ,	183. A number when multiplied by $\frac{6}{5}$ gives $\frac{108}{125}$.
$x = 31540 \times 7$	5 125 The number is:
x = ₹2,20,780	
179. If $\frac{2}{3}$ part of a pizza costs ₹ 300, then $\frac{3}{5}$ part of a	
pizza will cost: () \mp 100 (1) \mp 250	(c) $\frac{18}{25}$ (d) $\frac{25}{18}$
(a) ₹180 (b) ₹250 (c) ₹225 (d) ₹270	25 RRB NTPC 15.03.2021 (Shift-II) Stage I
(c) (225 (d) (276) RRB ALP & Tec. (30-08-18 Shift-I)	Ans. (c) : Let the number = x
Ans : (d) The cost of $2/3$ part of the pizza = ₹300	As per question
Then, the cost of 1 share of the pizza = $\frac{300 \times 3}{2} = ₹450$	$x \times \frac{6}{5} = \frac{108}{125}$ or $x = \frac{108 \times 5}{6 \times 125}$
The cost of $3/5^{\text{th}}$ share of the pizza = $450 \times \frac{3}{5}$	$\Rightarrow \qquad x = \frac{18}{25}$
= 90×3 =₹270	25
180. When 472 pieces of plywood, each 0.23 cm	184. Four fifths of a number is 12 more than three
thick, are placed on top of each other, what	fourths of the number. Find the number.
would be the height of the pillar in metre?(a) 10.856(b) 1.0856	(a) 120 (b) 160 (c) 200 (d) 240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(c) 200 (d) 240 RRB NTPC 30.12.2020 (Shift-II) Stage Ist
RRB ALP & Tec. (29-08-18 Shift-III)	Ans. (d) : Let the number = x
Ans : (b) The required height of the pillar,	According to the question,
$=\frac{0.23\times472}{100}$ = 1.0856 metre	
100	$\frac{4}{5}x - \frac{3}{4}x = 12$
181. 15 small rods, each of length $23\frac{2}{7}$ m are joined	16x - 15x - 12
7 0	$\frac{16x - 15x}{20} = 12$
to make a big rod. What is the length of the big rod?	x = 240
	Hence the number is 240.
(a) $349\frac{3}{7}$ m (b) $349\frac{1}{7}$ m	185. If $\frac{1}{5}$ of a number multiplied by $\frac{2}{3}$ of the same
(c) $349\frac{2}{7}$ m (d) $349\frac{5}{7}$ m	number gives 480, then the number is?
RRB ALP & Tec. (21-08-18 Shift-I)	(a) 60 (b) 70 (c) 80 (d) 100
Ans: (c) The length of each rod $= 23\frac{2}{7} = \frac{163}{7}$ m	(c) 80 (d) 100 RRB NTPC 10.01.2021 (Shift-II) Stage Ist
7 7 7	Ans. (a) : Let, number = x
In this way, the length of big rod $=15 \times \frac{163}{7}$	According to the question-
	$\mathbf{x} \times \frac{1}{5} \times \mathbf{x} \times \frac{2}{3} = 480$
$=\frac{2445}{7}=349\frac{2}{7}$ m	
1 1	$\frac{2x^2}{15} = 480$
182. Find the smallest four digit number which is a	= -400
-	
perfect square.	$x^2 = 240 \times 15$
-	

186. One-fourth of a number is equal to three-Ans. (c) : Let the digits of number are x, y and z eighth of another number. If 30 is added to the respectively. first number, then it becomes six times that of Given, x + y + z = 18 _____(i) the second number. The first number is: And, y = x + z(a) 12 (b) 20 On putting the value of y in equation (i), (d) 15 (c) 10 x + x + z + z = 18RRB NTPC 13.01.2021 (Shift-II) Stage Ist 2x + 2z = 18Ans. (c) : Let the first number is x and the second x + z = 9(ii) number is y then, According to the question, According to the question, 100x + 10y + z + 297 = 100z + 10y + x $\frac{x}{4} = \frac{3}{8}y$ 99x + 297 = 99zx + 3 = z (iii) On putting the value of z in equation (ii), $x = \frac{3}{2}y$... (i) x + x + 3 = 92x = 6x + 30 = 6y... (ii) And x = 3Substituting the value of x from equation (i) in equation On putting the value of x in equation (ii), (ii)x + z = 93 + z = 9 $\frac{3}{2}y + 30 = 6y$ $\frac{3}{2}y - 6y = -30$ z = 6From equation (i), y = x + zy = 3 + 6 $\frac{-9y}{2} = -30$ v = 9Hence, the number will be 396. 189. If a positive number is subtracted from its $y = \frac{20}{3}$ square, we get 812. Find the number. From equation (i)- $x = \frac{3}{2} \times \frac{20}{3}$ (a) 25 (b) 23 (c) 27 (d) 29 RRB NTPC 01.02.2021 (Shift-I) Stage Ist **Ans. (d) :** Let the number = xx = 10 and square of number $= x^2$ Calculate the positive number which when 187. According to the question, added by 15 is equal to 100 times the reciprocal $x^{2} - x = 812$ of the number. (a) 10 (b) 20 $x^2 - x - 812 = 0$ (c) 5 (d) 15 $x^{2} - 29x + 28x - 812 = 0$ RRB NTPC 15.02.2021 (Shift-II) Stage Ist x(x-29)+28(x-29)=0Ans. (c) : Let the positive number is x According to the question, (x-29)(x+28) = 0 $x + 15 = \frac{1}{x} \times 100$ x - 29 = 0x = 29 $x^{2} + 15x = 100$ The sum of 4 consecutive odd numbers is 160. 190. $x^2 + 15x - 100 = 0$ Find the smallest number. (a) 27 (b) 37 $x^{2} + 20x - 5x - 100 = 0$ (c) 35 (d) 25 x(x+20)-5(x+20)=0RRB NTPC 01.02.2021 (Shift-I) Stage Ist (x+20)(x-5) = 0Ans. (b) : Let the 4 consecutive odd numbers is x, x + 2, x + 4, x + 6x = 5According to the question, Hence the number is 5. (x) + (x + 2) + (x + 4) + (x + 6) = 160A number consists of 3 digits whose sum is 18 and 188. 4x + 12 = 160the middle digit is equal to the sum of other two. 4x = 148 $x = \frac{148}{2}$ If the number increased by 297 when its digits are reversed, then what is the number? Δ (a) 585 (b) 495 x = 37(c) 396 (d) 486 **RRB NTPC 01.02.2021 (Shift-I) Stage Ist** Hence, the smallest number (x) = 37

 $(y-2) \overline{(y+4)} = 0$ y = 2 Ans. (c) : Let the number is x According to the question, On putting the value of y in equation (i)- $-\mathbf{x} = \frac{1}{3}$ -x + 50 $\mathbf{x} \times \mathbf{2} = \mathbf{8}$ x = 4Hence required number = $10y + x = 10 \times 2 + 4 = 24$ The sum of the digits of a two digit number is 202. 9x - 4x10. When the digits are interchanged is = 50reduced the number to 36. Find the changed 12 number. 5x = 600(b) 73 (d) 28 (a) 82 x = 120(c) 37 The sum of three consecutive odd numbers is 199. RRB RPF Constable -17/01/2019 (Shift-III) more than first number of it by 20. Find the Ans: (c) Let the number = 10 x + ylargest number among them. According to the question, (b) 9 (a) 13 x + y = 10(i) (d) 7 (c) 11 The number obtained by interchanging digits = (10y + x)RRB JE - 28/06/2019 (Shift-III) According to the question Ans. (c) Let the three consecutive odd numbers are x, x (10 x+y) - (10 y + x) = 36+2, x +4. \Rightarrow 9x - 9y = 36 According to the question, x - y = 4(ii) x + x + 2 + x + 4 = x + 20By adding equation (i) and (ii), 3x + 6 = x + 202x = 142x = 14 $\mathbf{x} = 7$ x = 7And y = 3Hence, the required number = x + 4 = 7 + 4 = 11Hence, the changed number $(10y + x) = 10 \times 3 + 7 = 37$ Three times the first of three consecutive odd 200. The sum of a two digit number and the number 203. integers is 3 more than two times the third. made by interchanging its digits is 132. If the Find the third integer. difference of the digits is 4, find the number. (a) 15 (b) 13 (a) 37 (b) 84 (c) 11 (d) 9 (c) 73 (d) 62 RRB JE - 26/06/2019 (Shift-III) **RRB RPF-SI -16/01/2019 (Shift-III)** Ans : (a) Let three consecutive odd integers = x, x+2, Ans: (b) Let the tens digit of the number is x and the x+4 unit digit is y. According to the question, So, the number = 10x + y3x = 2(x + 4) + 3According to the question, 3x = 2x + 8 + 3x - y = 4....(i) x = 11Hence, the third integer = x + 4 = 11 + 4 = 15And, 10x + y + 10y + x = 132201. On adding 18 to a two digit number, the digits 11x + 11y = 132of the number are interchanged. The product x + y = 12....(ii)of the digits is '8'. Find the number. From equation (i) and (ii), (a) 42 (b) 18 (c) 32 x - y = 4(d) 24 RRB JE - 27/06/2019 (Shift-I) x + y = 122x = 16Ans : (d) Let the unit digit = x. x = 8, y = 4tens digit = vThe number = 10y + xHence, the required number = $10x + y = 10 \times 8 + 4 = 84$ Given, xy = 8---(i) 204. The sum of the digits of a two digit number is According to the question, 12. The new number formed when the digits 10y + x + 18 = 10x + yare interchanged is 18 more than the original 9x - 9y = 18number. What is the original number? x - y = 2(a) 39 (b) 48 (c) 75 On putting the value of $x = \frac{8}{v}$ (d) 57 **RRB** Group-D - 26/11/2018 (Shift-III) Ans : (d) Let the tens digit of the number is x and the $\cdot y = 2$ unit digit is y. Given, x + y = 12(i) = 2yHence, the two digit number = 10x + y+2y - 8 = 0The number obtained by interchanging the place of the $y^2 + 4y - 2y - 8 = 0$ digits = 10y + xy(y+4)-2(y+4) = 0

Putting the value of a in equation (i), According to the question, 8 + b = 1110 y + x = 10x + y + 18b = 39y - 9x = 18Hence, the required number = $10 \times 8 + 3 = 83$ 9x - 9y = -18The difference between a number of two digits 207. x - y = -2.....(ii) and the new number formed when the digits By adding equation (i) and (ii), are interchanged is 45. Find the difference x + y = 12between the two digits. $\mathbf{x} - \mathbf{y} = -2$ (a) 4 (c) 6 2x = 10**RRB NTPĆ 05.04.2016 Shift : 2** x = 5Ans: (b) Let the tens digit be x. And the unit digit be y. y = 7The number = 10x + yHence, the required number = $10x+y = 10 \times 5+7 = 57$ According to the question, The sum of the digits of a two digit number is 205. (10x + y) - (10y + x) = 459. Also nine times of this number is twice the 9x - 9y = 45number obtained by reversing the order of the Hence, the required difference will be x - y = 5digits. Find the number. 208. The sum of the digits of a two digit number is (a) 19 (b) 18 11. If the digits are interchanged, the number (c) 28 (d) 30 decreases to 63. Find the number. **RRB Group-D – 05/11/2018 (Shift-III)** (a) 83 **Ans. (b)**: Let the tens digit is x and the unit digit is y. (c) 29 **RRB NTPC 04.04.2016 Shift : 3** The number = 10x + yAccording to the first condition, Ans : (b) Let the tens digit be x and the unit digit be y x + y = 9....(i) of the number. According to the second condition, The number = 10x + y• $(10x + y) \times 9 = (10y + x) \times 2$ According to the question-90x + 9y = 20y + 2xx + y = 1188x = 11yv = 8xAnd 10y + x = 10x + y - 63Putting the value of y in equation (i), 9x - 9y = 63x + 8x = 9x - y = 7 $\mathbf{x} = 1$ By adding equation (i) and (ii) Putting the value of x in equation (i), $2x = 18 \Rightarrow x = 9, y = 2$ 1 + y = 9y = 8 Hence, the number = $10x + y = 10 \times 9 + 2 = 92$ Hence, the number = 10x + yThe sum of the digits of a two digit number is 209. $= 10 \times 1 + 8 = 18$ 9. When 27 is added to the number, the place of The sum of the digits of a two digit number is 206. the digits are interchanged. Find the number. 11. The new number formed when the digits (a) 45 interchanged is 45 less than the original (c) 18 RRB NTPC 03.04.2016 Shift : 1 number. Find the original number. **Ans : (b)** Let the unit digit be x in the two digit number. (a) 92 (b) 56 (d) 83 (c) 65 Then According to the question, **RRB Group-D – 15/10/2018 (Shift-III)** The tens digit = 9 - x And the number = 10(9 - x) + xAns. (d) : Let the tens digit of the number is a and the 10(9-x) + x + 27 = 10x + 9 - xunit digit is b. \Rightarrow 90 - 10x + x + 27 = 9x + 9So, the number = 10a + b90 + 27 - 9 = 18x \Rightarrow According to the question, 18x = 108 \Rightarrow $a + b = 11 \dots(i)$ x = 610b + a = 10 a + b - 45Then, the number =10(9-x) + x9a - 9b = 45=10 (9-6) + 6 = 36 a - b = 5(ii) The sum of the digits of a two digit number is 210. On adding equation (i) and (ii), 13. If those digits are interchanged, the number gets decreased by 27. Find the changed a + b = 11number. a - b = 5(a) 85 2a = 16(c) 67 **RRB NTPC 02.04.2016 Shift : 1** a = 8

Number System

YCT

(b) 5

(d) 7

(b) 92 (d) 38

(b) 36

(d) 27

(b) 76

(d) 58

..... (i)

..... (ii)

Ans: (d) Let the tens digit is x, 9x - 9y = -18The unit digit = 13 - xx - y = -2 -----(ii) \therefore The number = $10 \times x + (13 - x)$ By adding equation (i) and (ii) -According to the question, $2x = 8 \Rightarrow x = 4$, y = 6 $10 \times (13 - x) + x = 10 \times x + (13 - x) - 27$ Hence, The required number $= 10 \times 4 + 6 = 46$ 130 - 10x + x = 10x + 13 - x - 27The sum of a two digit number and the number 214. 18 x = 144x = 8formed by interchanging its digits, is 99. Find ... The changed number, the number if the difference of the digits is 3. (b) 63 (d) 54 (a) 27 $= 10 \times (13 - x) + x$ (c) 45 $= 10 \times (13 - 8) + 8$ RRB NTPC 10.04.2016 Shift : 3 $= 10 \times 5 + 8 = 58$ Ans: (b) Let the unit digit be y and the tens digit be x. 211. The sum of a two digit number is 9. The \therefore The number = 10x + ynumber is reduces from 45, when the digits are According to the question, interchanged, find the changed number. (a) 45 (b) 72 (10x + y) + (10y + x) = 9911x + 11y = 99(c) 63 (d) 27 x + y = 9(i) RRB NTPC 02.04.2016 Shift : 2 x - y = 3(ii) Ans : (d) Let the tens digit be = xBy adding equation (i) and (ii), And the unit digit be = y Number = 10 x + yGiven, x + y = 9(1) 2x = 12x = 6 From equation (i), y = 3According to the question, \therefore The required number = $10x+y = 10 \times 6+3 = 60+3=63$ (10 x + y) - (10 y + x) = 45The sum of the digits of a two digit number is 9x - 9y = 45215. $x - y = 5 \dots (2)$ 5. When the digits are reversed the number decreases by 9. Find the changed number. Equation (1) + (2)(a) 32 (b) 23 $2x = 14 \implies x = 7$ (c) 41 (d) 14 From, equation (1), RRB NTPC 28.04.2016 Shift : 3 v = 9 - 7 = 2Ans : (b) Let the tens digit of the number be x and the Hence, The required number = $10y+x = 10 \times 2+7 = 27$ unit digit be y. The sum of digits of a two-digit number is 10. 212. \therefore the number = 10x + y When the digits are reversed, the number According to first condition, decreases by 54. Find the new number. x + y = 5(i) (a) 73 (b) 28 The obtained number after reversing the digits = 10y+x(c) 82 (d) 37 According to the question, RRB NTPC 02.04.2016 Shift : 3 (10x+y) - (10y+x) = 9Ans : (b) Let the tens digit of the number is x and the \Rightarrow 9x - 9y = 9 unit digit is y. $\Rightarrow x - y = 1$(ii) \therefore The number = 10x + yBy adding equation (i) and (ii), According to the question, 2x = 6x + y = 10 -----(i) x = 3And 10x + y = 10y + x + 54From equation (ii) \Rightarrow 9x - 9y = 54 \Rightarrow x - y = 6 - - - - (ii) 3 - v = 1y = 3 - 1 = 2By adding equation (i) and (ii), Hence, the changed number = 10y + x $2x = 16 \implies x = 8, y = 2$ $= 10 \times 2 + 3 = 23$ Hence, the new number $= 10y + x = 10 \times 2 + 8 = 28$ **Type - 5** 213. The sum of digits of a two-digit number is 10. When the digits are interchanged, the number increases by 18. Find the number. 216. 0.23 is (a) 46 (b) 64 (a) An irrational number (c) 19 (d) 28 (b) A rational number RRB NTPC 29.03.2016 Shift : 1 (c) A prime number Ans : (a) Let the tens digit of the number is x and the (d) A composite number unit digit is y. RRB NTPC 20.01.2021 (Shift-I) Stage Ist The number = 10x + y.**.**. Ans. (b) : Let us assume According to the questionv = 0.23....(i)x + y = 10 -----(i) Multiplying by 100 in equation (i)-And 10x + y = 10y + x - 18

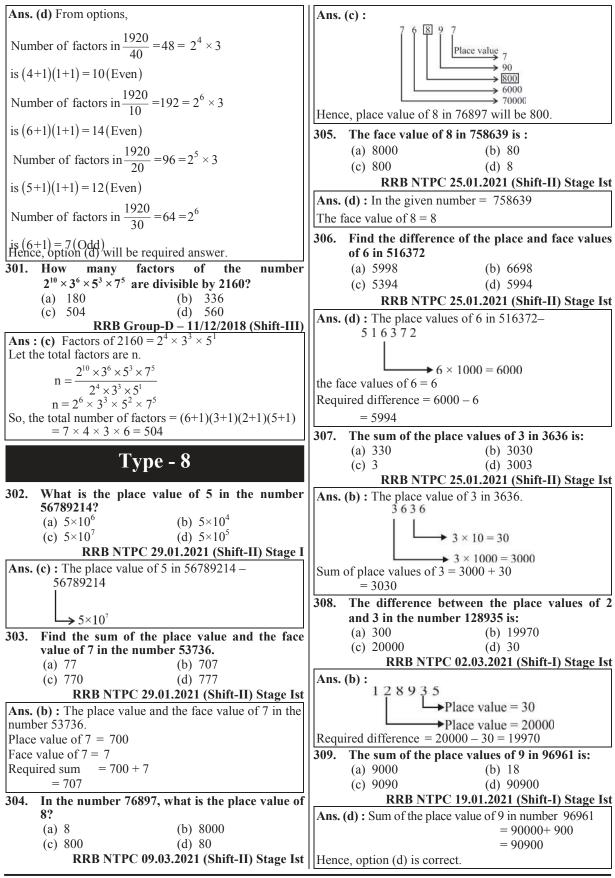
Number System

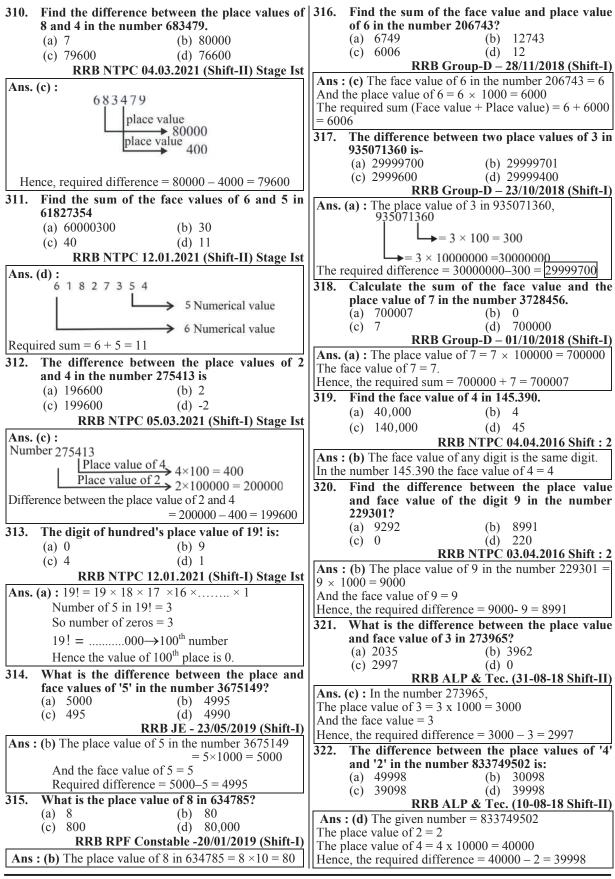
$100y = 23 \cdot \overline{23}$ (ii)	Ans. (d) :
Subtracting eq ⁿ (i) from eq ⁿ (ii)	$\frac{1}{1+1}$ $\frac{1+2}{1+2}$
99y = 23	$=\frac{\frac{1}{4}+\frac{1}{2}}{2}=\frac{\frac{1+2}{4}}{2}=\frac{3}{8}$
$y = \frac{23}{99}$ (Rational number)	2 2 0
,,,	Therefore, rational number $\frac{3}{8}$ will lie between $\frac{1}{4}$ and
217. $(\sqrt{3} + \sqrt{11})^2$ is a/an	
(a) Natural number (b) Whole number	$\frac{1}{2}$.
(c) Irrational number (d) Rational number	
RRB NTPC 20.01.2021 (Shift-I) Stage Ist	222. Express $\frac{-40}{56}$ as a rational number whose
Ans. (c) :	numerator is –5.
$(\sqrt{3} + \sqrt{11})^2 = 3 + 11 + 2 \times \sqrt{3} \times \sqrt{11}$	(a) $-\frac{5}{2}$ (b) $-\frac{5}{2}$
$(\sqrt{3} + \sqrt{11})^2 = 14 + 2\sqrt{33}$	$(a) -\frac{1}{6}$ $(b) -\frac{1}{8}$
Therefore $(\sqrt{3} + \sqrt{11})^2$ is an irrational number	(a) $-\frac{5}{6}$ (b) $-\frac{5}{8}$ (c) $-\frac{5}{7}$ (d) $-\frac{5}{18}$
218. The product of $\sqrt{2}$ and $\sqrt{3}$ is:	RRB NTPC 23.07.2021 (Shift-II) Stage Ist
(a) Sometimes a rational number and sometimes	
an irrational number	Ans. (c) : $-\frac{40}{56} = -\frac{8 \times 5}{8 \times 7} = -\frac{5}{7}$
(b) Equal to 4	56×7 7 It is clear that option (c) is the required rational number.
(c) A rational number	
(d) An irrational number RRB NTPC 20.01.2021 (Shift-I) Stage Ist	$\left(3\sqrt{5} + \sqrt{125} \right) \qquad $
Ans. (d) : From above question,	223. $\frac{(3\sqrt{5} + \sqrt{125})}{(\sqrt{80} + 6\sqrt{5})}$ is
$\sqrt{2} \times \sqrt{3} = \sqrt{6}$ (irrational number)	(a) A rational number (b) A natural number
An irrational number is a real number that can't be	(c) An integer (d) An irrational number
An infational number is a real number that can't be expressed in the form p/q , $q\neq 0$	RRB NTPC 13.01.2021 (Shift-I) Stage Ist
for example - $\sqrt{2}$, $\sqrt{5}$, $\sqrt{7}$, etc.	Ans. (a) : Given,
219. The number of rational number between 5 and	
7 is:	$\frac{3\sqrt{5} + \sqrt{125}}{\sqrt{80} + 6\sqrt{5}}$
(a) 2 (b) 0	
(c) Infinite (d) 1 RRB NTPC 19.01.2021 (Shift-II) Stage Ist	$=\frac{3\sqrt{5}+5\sqrt{5}}{4\sqrt{5}+6\sqrt{5}}$
Ans. (c) : Note:- There are infinite number of rational	
numbers between any two integers. Hence, there are	$=\frac{8\sqrt{5}}{10\sqrt{5}}=\frac{8}{10}=\frac{4}{5}$ (rational number)
infinite number of rational numbers that occurs between	
5 and 7.	Therefore $\frac{3\sqrt{5} + \sqrt{125}}{\sqrt{80} + 6\sqrt{5}}$ is a rational number
220. $3+2\sqrt{5}$ is: (a) Rational number (b) Irrational number	$\frac{1}{\sqrt{80} + 6\sqrt{5}}$ is a rational number
(c) Composite number (d) Natural number	224. Number 0.232323 can be written in rational
RRB NTPC 07.01.2021 (Shift-II) Stage Ist	form as:
Ans. (b) : Irrational number: The set of real numbers that cannot be represented in form of p/q is called	(a) $\frac{23}{999}$ (b) $\frac{23}{99}$ (c) $\frac{23}{9}$ (d) $\frac{23}{990}$
irrational number that means the number which is not	RRB NTPC 30.12.2020 (Shift-I) Stage Ist
rational is called irrational number.	Ans. (b) : 0.232323
Example- $\sqrt{2}$, $\sqrt{3}$	$= 0.\overline{23}$
$\therefore 3 + 2\sqrt{5}$ is an irrational number.	23
221. Which of the following rational number lies	$=\frac{23}{99}$
between $\frac{1}{4}$ and $\frac{1}{2}$.	225. Which of the following rational number lies
1 1	between 9.2 and 10.5?
(a) $\frac{1}{\epsilon}$ (b) $\frac{1}{8}$	(a) 9.15 (b) 9.55 (c) 10.67 (d) 0.08
o 8 3 3	(c) 10.67 (d) 9.08 RRB NTPC 03.03.2021 (Shift-I) Stage Ist
(a) $\frac{1}{6}$ (b) $\frac{1}{8}$ (c) $\frac{3}{5}$ (d) $\frac{3}{8}$	Ans. (b) \therefore 9.55 is the rational number lies between 9.2
RRB NTPC 31.01.2021 (Shift-II) Stage Ist	

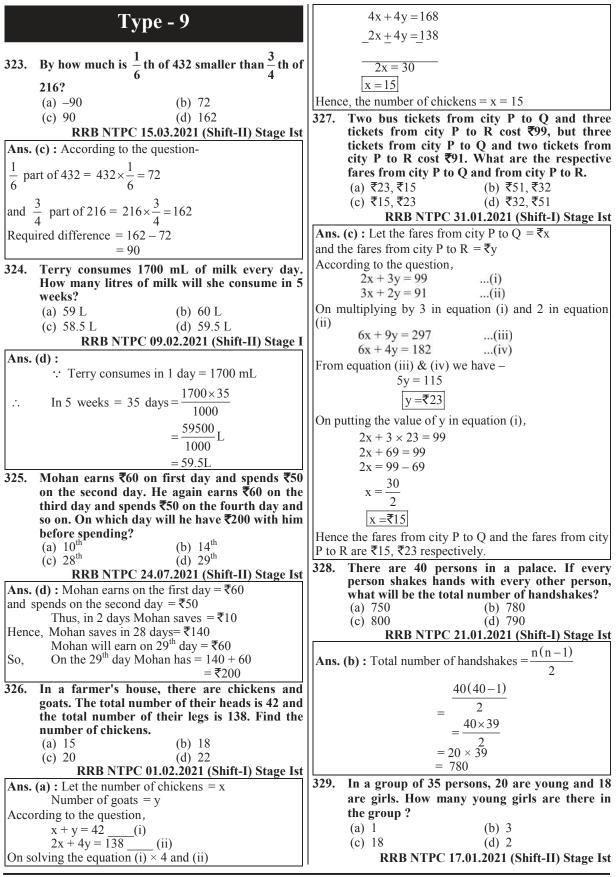
226. Which of the following is a rational number $|\overline{Ans:(c)} \text{ Let } x = 0.125$ between $\sqrt{5}$ and $\sqrt{7}$? x = 0.125125(i) (a) $4\frac{1}{5}$ 1000x = 125.125125 (ii) (b) $1\frac{1}{5}$ From equation (ii)- equation (i) -999x = (125.125125....) - (0.125125...)(c) $2\frac{2}{5}$ (d) $3\frac{1}{5}$ 999x = 125.0RRB NTPC 20.01.2021 (Shift-I) Stage Ist $x = \frac{125}{999}$ **Ans.** (c) : $\sqrt{5} = 2.23$ and $\sqrt{7} = 2.64$ From the given options, Find the value of the denominator of $\frac{1}{(5+\sqrt{3})}$ 231. (a) $4\frac{1}{5} = \frac{21}{5} = 4.2$ (b) $1\frac{1}{5} = \frac{6}{5} = 1.2$ in rational number. (c) $2\frac{2}{5} = \frac{12}{5} = 2.4$ (d) $3\frac{1}{5} = \frac{16}{5} = 3.2$ (a) $\frac{(5-\sqrt{3})}{22}$ (b) $5 + \frac{\sqrt{3}}{22}$ Hence $2\frac{2}{5}$, is a rational number between $\sqrt{5}$ and $\sqrt{7}$. (d) $\frac{\left(5-\sqrt{3}\right)}{20}$ (c) $5 - \frac{\sqrt{3}}{20}$ 227. Which of the following is not a rational number? $\sqrt{3^2+4^2}$, $\sqrt{12.96}$, $\sqrt{125}$ and $\sqrt{900}$ RRB Group-D - 29/10/2018 (Shift-III) Ans : (a) (a) $\sqrt{12.96}$ (b) $\sqrt{900}$ According to the question-(c) $\sqrt{125}$ (d) $\sqrt{3^2 + 4^2}$ $\frac{1}{\left(5+\sqrt{3}\right)} = \frac{\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}$ RRB NTPC 05.01.2021 (Shift-I) Stage Ist Ans. (c) : $\sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \rightarrow \text{Rational}$ $=\frac{\left(5-\sqrt{3}\right)}{\left(5\right)^2-\left(\sqrt{3}\right)^2}$ $\sqrt{12.96} = \sqrt{1296 \times 10^{-2}} = \frac{36}{10} = \frac{18}{5} \rightarrow \text{Rational number}$ $\sqrt{125} = \sqrt{5 \times 5 \times 5} = 5\sqrt{5} \rightarrow$ Irrational Number $\sqrt{900} = \sqrt{30 \times 30} = 30 \rightarrow \text{Rational Number}$ $=\frac{(5-\sqrt{3})}{25-3}$ $=\frac{(5-\sqrt{3})}{22}$ Hence, $\sqrt{125}$ is not a rational number. Which of the following is not a rational 228. Which of the following square roots is 232. number? irrational? (b) π (d) 8.36712846781 (a) ∛1728 (a) 21025 (b) 18025 (c) 2.487627287 RRB RPF-SI -05/01/2019 (Shift-I) (c) 13225 (d) 15625 Ans : (b) Irrational numbers is a real number which RRB Paramedical Exam - 21/07/2018 (Shift-I) cannot be expressed as p/q. (where p and q are integers **Ans. (b)** : $\sqrt{21025} = \sqrt{5 \times 5 \times 29 \times 29}$ and q is not 0). It means, irrational number cannot be expressed as = 145 (Rational number) fractions. for example $\sqrt{2}$ and π are irrational number. $\sqrt{18025} = \sqrt{5 \times 5 \times 7 \times 103}$ 229. Which of the following is not an irrational? = 135.257 (Irrational number) (a) $\sqrt{5428}$ (b) $\sqrt{6084}$ $\sqrt{13225} = \sqrt{5 \times 5 \times 23 \times 23}$ (d) $\sqrt{7652}$ (c) π $= 5 \times 23 = 115$ (Rational number) RRB RPF Constable -18/01/2019 (Shift-III) $\sqrt{15625} = \sqrt{5 \times 5 \times 5 \times 5 \times 5}$ Ans. (b) : The real numbers which cannot be expressed as p/q, where p and q are integers and q is not 0, are called irrational numbers. These numbers are represented by Q^{C} or Q^{I} . $= 5 \times 5 \times 5 = 125$ (Rational number) Hence, it is clear that the square root of 18025 is irrational number. For example- $\sqrt{2}$, $1 + \sqrt{3}$, π Find the rational value of the denominator of 233. $\sqrt{6084} = \sqrt{78 \times 78} = 78$ (Rational number) $1/(2+\sqrt{3})$. 230. Denote $\overline{0.125}$ as a rational number. (a) $2 + \sqrt{3}$ (b) $2-\sqrt{3}$ (a) 119/993 (b) 113/990 (c) 1 (d) $4 + \sqrt{3}$ (d) 100/999 (c) 125/999 RRB Group-D - 22/10/2018 (Shift-III) RRB JE - 25/05/2019 (Shift-I)

Ans: (b) Rationalizing the denominator of $\frac{1}{2+\sqrt{3}}$,	237. Among the following which is a rational number?
	(a) $\sqrt[3]{2}$ (b) $\sqrt[3]{8}$ (c) $\sqrt[3]{4}$ (d) $\sqrt[3]{12}$
$\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$	RRB ALP & Tec. (13-08-18 Shift-III)
	Ans : (b) Rational number can be written as p/q ; $(q \neq 0)$.
$=\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}$	From option (b),
$2^2 - (\sqrt{3})^2$	$\sqrt[3]{8} = 2$ is rational number
$=\frac{2-\sqrt{3}}{4-3}=2-\sqrt{3}$	238. Which of the numbers given below is NOT
4-5	rational number? (a) $\sqrt{64}$ (b) $\sqrt[3]{64}$ (c) $\sqrt[3]{8}$ (d) $\sqrt{8}$
234. Find the rational value of the denominator of	(a) $\sqrt{04}$ (b) $\sqrt{04}$ (c) $\sqrt{0}$ (d) $\sqrt{0}$ RRB ALP & Tec. (09-08-18 Shift-II)
$\frac{1}{(5+2\sqrt{3})}$	Ans : (d) $\sqrt{64} = 8$ (Rational number)
(a) $\frac{(5-2\sqrt{3})}{12}$ (b) $\frac{(5-2\sqrt{3})}{13}$	$\sqrt[3]{64} = 4$ (Rational number)
12 15	$\sqrt[3]{8} = 2$ (Rational number)
(c) $5 - \frac{2\sqrt{3}}{13}$ (d) $5 + \frac{2\sqrt{3}}{13}$	$\sqrt{8} = 2\sqrt{2}$ (Irrational number)
13 RRB Group-D – 25/10/2018 (Shift-II)	
Ans : (b) Rationalizing the denominator of the given	(A number which we can write as p/q where p and q
fraction,	both are integers but $q \neq 0$ is called rational numbers.)
$= \frac{1}{(5+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})}$	239. All irrational numbers arenumbers. (a) Integers (b) Imaginary
	(c) Whole (d) Real
$=\frac{(5-2\sqrt{3})}{(5)^2-(2\sqrt{3})^2} \qquad [(a+b)(a-b)=a^2-b^2]$	RRB NTPC 19.01.2017 Shift : 3 Ans : (d) All irrational numbers are real numbers.
	As- $\sqrt{2}$
$=\frac{5-2\sqrt{3}}{25-12}=\frac{5-2\sqrt{3}}{12}$	240. Which of the following is an irrational?
23–12 13 235. From the given options, find the rational	(a) $\sqrt{1000000}$ (b) $\sqrt[3]{1000000}$
number between the range 2/4 and 0.6.	(c) $\sqrt[6]{1000000}$ (d) $\sqrt[4]{1000000}$
(a) $\frac{11}{25}$ (b) $\frac{21}{40}$	RRB Group-D – 08/10/2018 (Shift-II) Ans : (d) From options-
	$(a) \sqrt{1000000}$
(c) $\frac{3}{4}$ (d) $\frac{11}{4}$	$\sqrt{100 \times 100 \times 100} = 10 \times 10 \times 10 = 1000$ (Rational)
RRB NTPC 19.01.2017 Shift : 2	(b) $\sqrt[3]{1000000} = (100^3)^{\frac{1}{3}} = 100$ (Rational)
Ans: (b) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6	
4	(d) $\sqrt[4]{1000000} = 10\sqrt[4]{100}$ (Irrational)
$=\frac{21}{40}=0.525$	241. Which of the following is an irrational
Hence, 0.5< 0.525< 0.6	number?
236. Which of the following numbers is irrational?	(a) $\sqrt[4]{4}$ (b) $\sqrt[3]{8}$ (c) $\sqrt{16}$ (d) $\sqrt[6]{1}$
(a) $\sqrt[3]{64}$ (b) $\sqrt{64}$	RRB Group-D – 22/09/2018 (Shift-III) Ans. (a) : Irrational number – The number which
(c) ⁶ √64 (d) ⁴ √64 RRB ALP & Tec. (30-08-18 Shift-I)	Ans. (a) : Infational number – The number which cannot be expressed as p/q. Example- $\sqrt{3}$, $\sqrt{6}$ $\sqrt[4]{4}$
Ans : (d) From options,	From options-
$\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number)	(a) $\sqrt[4]{4} = (2^2)^{\frac{1}{4}} = 2^{\frac{1}{2}} = \sqrt{2}$ (Irrational number)
	(b) $\sqrt[3]{8} = \sqrt[3]{2 \times 2 \times 2} = 2$ (Rational number)
$\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number)	(c) $\sqrt{16} = \sqrt{2 \times 2 \times 2 \times 2} = 2 \times 2 = 4$ (Rational number)
$\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number)	(d) $\sqrt[6]{1} = 1$ (Rational number)
$\sqrt[4]{64} = \sqrt[4]{16} \times \sqrt[4]{4} = 2 \times \sqrt[4]{4} = (\text{Irrational number})$	Note– π is an irrational number while 22/7 is a rational number.

242. Which of the following is a rational number? (a) $\sqrt[3]{2}-2$ (b) $\sqrt[3]{8}-2$	247. Whose square root from the following numbers will be rational?
(a) $\sqrt{2} = 2$ (b) $\sqrt{8} = 2$ (c) $\sqrt[3]{4} + 4$ (d) $\sqrt[3]{12} + 1$	(a) 46232 (b) 46233
$\frac{(c)}{RRB} Group-D - 25/09/2018 (Shift-I)$	(c) 14448 (d) 34225
Ans : (b)	RRB Group-D – 06/12/2018 (Shift-II) Ans. (d) : From options–
Rational number - Such numbers which can be	
expressed as p/q ; $(q \neq 0)$, are called rational numbers.	$(a)46232 = \sqrt{46232} = 215.016$
Example:- $\sqrt[3]{8}$, $\sqrt{4}$ etc;	$(b)46233 = \sqrt{46233} = 215.0186$
Irrational number – Such numbers which cannot be	$(c)14448 = \sqrt{14448} = 120.199$
expressed as p/q. Example:- $\pi, \sqrt[3]{2}, \sqrt{2}$ etc;	$(d)34225 = \sqrt{34225} = 185$
From options, $\sqrt{2}$	Hence, The square root of 34225 is 185, which is a
$\sqrt[3]{8} - 2 = 0$ is a rational number while others $\sqrt[3]{2} - 2$,	rational number.
$\sqrt[3]{4} + 4$ and $\sqrt[3]{12+1}$ are irrational numbers.	248. Whose square root from the following numbers
243. Which of the following is an irrational number?	is irrational? (a) 5184 (b) 4465
(a) $\sqrt[4]{1024}$ (b) $\sqrt[10]{1024}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(a) $\sqrt{1024}$ (b) $\sqrt{1024}$ (c) $\sqrt{1024}$ (d) $\sqrt[5]{1024}$	RRB Group-D – 05/12/2018 (Shift-II)
RRB Group-D – 27/09/2018 (Shift-I)	Ans. (b) From options,
Ans. (a) From options,	(a) $\sqrt{5184} = 72$
(a) $\sqrt[4]{1024} = 4\sqrt[4]{4}$ (Irrational number)	(b) $\sqrt{4465} = \sqrt{5 \times 19 \times 47}$ (Irrational)
(b) $\sqrt[10]{1024} = 2$ (Rational number)	(c) $\sqrt{3025} = 55$
(c) $\sqrt{1024} = 32$ (Rational number)	(d) $\sqrt{8836} = 94$
(d) $\sqrt[5]{1024} = 4$ (Rational number)	Hence, the square root of 4465 is irrational.
244. Which of the following is not a rational	249. Whose square root from the following numbers is rational?
number?	(a) 336 (b) 344
(a) $\sqrt[3]{32}$ (b) $\sqrt[3]{64}$	(c) 320 (d) 324
(c) $\sqrt[4]{32}$ (d) $\sqrt[3]{27}$	$\frac{\text{RRB Group-D} - 04/12/2018 \text{ (Shift-III)}}{\text{Ans. (d) From ontion (d)}}$
RRB Group-D – 28/09/2018 (Shift-I) Ans : (c) From options,	Ans. (d) From option (d), $\sqrt{324} = \sqrt{18 \times 18} = 18$
$\sqrt[5]{32} = 2$ (Rational)	Hence, the square root of 324 will be 18, which is a
$\sqrt[3]{64} = 4$ (Rational)	rational number.
$\sqrt[3]{27} = 3$ (Rational)	250. Whose square root from the following numbers
$\sqrt[4]{32} = 2\sqrt[4]{2}$ (Irrational)	will be irrational? (a) 6441 (b) 9604
245. Which from the following is a rational	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
number?	RRB Group-D – 03/12/2018 (Shift-II)
(a) $\sqrt[5]{1551}$ (b) $\sqrt[3]{1331}$	Ans : (a) From options,
(c) $\sqrt{1221}$ (d) $\sqrt[4]{1441}$	$\sqrt{6441} = 80.25$ is irrational
RRB Group-D – 11/10/2018 (Shift-III)	$\sqrt{9604} = \sqrt{98 \times 98} = 98$
Ans : (b) A rational number can be written as p/q ; $(q \neq 0)$.	$\sqrt{7921} = \sqrt{89 \times 89} = 89$
Hence, From option (b) $\sqrt[3]{1331} = \sqrt[3]{11 \times 11 \times 11} = 11$ Therefore, 11/1 is a rational number.	$\sqrt{5776} = \sqrt{76 \times 76} = 76$
246. Whose square root from the following numbers	Hence, the square root of 6441 will be irrational. 251. Whose square root from the following numbers
is a rational number?	251. Whose square root from the following numbers is a rational number?
(a) 576 (b) 512	(a) 144 (b) 136
(c) 480 (d) 544 RRB Group-D – 07/12/2018 (Shift-III)	(c) 128 (d) 120
Ans : (a) From the options,	RRB Group-D – 01/12/2018 (Shift-II) Ans : (a) From options–
$(a)\sqrt{576} = 24$	$\sqrt{144} = 12$
$\frac{(b)}{(b)}\sqrt{512} = 16\sqrt{2}$	$\sqrt{136} = 2\sqrt{34}$
(c) $\sqrt{480} = 4\sqrt{30}$	$\sqrt{128} = 8\sqrt{2}$
$(d)\sqrt{544} = 4\sqrt{34}$	$\sqrt{120} = 3\sqrt{2}$ $\sqrt{120} = 2\sqrt{30}$
	Hence, the square root of 144 is 12, that is a rational
number.	number.
Number System A	




Ans. (a) From option (a),	Ans. (b) : Square root of 4042,
99	
9 98 01	
9 81	6 4042
189 17 01	+6 36
9 17 01	123 442
XXXX	369
Hence, 9801 is a perfect square of 99.	73
262. If the last digit of the square of a number is 1.	Square of $64 = 64 \times 64 = 4096$
Find the last digit of its cube. (a) Only 9 (b) 1 or 9	Hence, the required number = $4096-4042 = 54$
(c) Any odd number (d) Only 1	By adding 54, the number 4042 will become a perfect
RRB JE - 27/06/2019 (Shift-I)	square.
Ans : (b) Let the number be 9. The last digit of whose	266. Divide the number 137592 by the smallest
square is 1. Which is as follows-	number that leaves no remainder and quotient
$9^2 = 81$	is a perfect cube. Find the cube root of the quotient.
Last digit of 729 which is cube of $9 = 9$	(a) 8 (b) 2 (c) 4 (d) 6
Let the number be 11. The last digit of whose square is 1.	RRB Group-D – 05/12/2018 (Shift-II)
Which is as follows- $11^2 = 121$	Ans. (d) $137592 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 7 \times 13$
$11^{-} = 121$ The last digit of the cube of 11-	Hence, it is clear that, dividing 137592 by $7 \times 7 \times 13 =$
$11^{3} = 1331$	637 will leave no remainder And quotient 216 will be a perfect cube.
Hence the last digit = 1	$216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$
Hence the number will be 1 or 9.	Hence, the required cube root = $2 \times 3 = 6$
263. The sum and the difference of two numbers are	267. A positive number exceed its square root by 30.
25 and 3 respectively. Find the difference of	Find the number. (a) 16 (b) 36
their squares.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(a) 165 (b) 75	RRB NTPC 02.04.2016 Shift : 3
(c) 154 (d) 140	Ans : (b) Let the number be x, then-
RRB JE - 27/06/2019 (Shift-III) Ans : (b) Let the two numbers are x and y	$x = \sqrt{x} + 30$
According to the question	$x - 30 = \sqrt{x}$ On squaring in both side-
$x + y = 25 \qquad $	· •
x - y = 3(ii)	$\left(\mathbf{x} - 30\right)^2 = \left(\sqrt{\mathbf{x}}\right)^2$
$x^{2} - y^{2} = (x + y) (x - y) = 25 \times 3 = 75$	$x^{2} + 900 - 60x = x$
Hence, the difference of their squares $= 75$	$x^2 - 60x - x + 900 = 0$
264. How many perfect squares are there between	
100 and 200?	$x^2 - 36x - 25x + 900 = 0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x(x-36) - 25(x-36) = 0
RRB JE - 27/06/2019 (Shift-III)	(x-36)(x-25)=0
Ans : (b) Perfect square numbers greater than 100 or	x - 36 = 0 or $x - 25 = 0$
nearest to $100 = 121 = (11)^2$	x = 36 or $x = 25$
Perfect square numbers smaller than 200 or nearest to	25 is not more than its square root, which does not follow the condition.
$200 = 196 = (14)^2$	Hence, the required number will be $x = 36$.
The numbers from $(11)^2$ to $(14)^2$ are = 121, 144, 169,	268. What smallest number should be added to the
196 Therefore, there will be 4 such perfect square numbers	sum of squares of 15 and 14, so that the
between 100 and 200.	resulting number is a perfect square? (a) 17 (b) 20 (c) 11 (d) 9
265. Find the least number that should be added to	RRB NTPC 29.03.2016 Shift : 1
4042 to make it a perfect square.	Ans : (b) $15^2 + 14^2 = 225 + 196 = 421$
(a) 41 (b) 54	Let the number to added be x,
(a) 41 (b) 54 (c) 64 (d) 58	$421 + x = 441$ $\Rightarrow x = 441 - 421 = 20$
	$\Rightarrow x = 441 - 421 = 20$ Hence, the required number = 20


269. Calculate the sum of squares of numbers from || Ans. (b) : $9^6 \times 12^4 \times 7^7$ $=3^{12} \times 3^4 \times 2^8 \times 7^7$ 1 to 9. (a) 284 (b) 285 $=3^{16} \times 2^8 \times 7^7$ (d) 380 **RRB NTPC 27.04.2016 Shift : 1** (c) 385 Sum of prime factors = 3+2+7 = 12Ans : (b) The sum of squares of first n numbers $=\frac{n(n+1)(2n+1)}{(2n+1)}$ 275. For any natural number n, $6^n - 5^n$ always ends with; 6 (a) 7 (b) 1 : The sum of squares from 1 to 9 will be-(c) 5 (d) 3 $=\frac{9(9+1)(18+1)}{2}=\frac{9\times10\times19}{2}=285$ RRB NTPC 28.12.2020 (Shift-II) Stage Ist Ans. (b) : The unit value of $6^n - 5^n$ for any natural 6 6 number 'n' will always be 1 because 6 can be any 270. Calculate the sum of squares of number from 1 natural number in the power that units number in the to 10. power of 5 has its unit digit as 5. (a) 384 (c) 385 (b) 285 276. What is the total number of odd and even (d) 380 RRB NTPC 30.04.2016 Shift : 2 divisors of 120, respectively? (b) 16,0 (a) 12,4 Ans : (c) The sum of squares of first n numbers (c) 4,12 $=\frac{n(n+1)(2n+1)}{2n+1}$ (d) 8,8 RRB NTPC 01.02.2021 (Shift-II) Stage I 6 Ans. (c) : Divisors of 120– The sum of squares of the numbers from 1 to 10 will 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24 be-30, 40, 60, 120 $\frac{10(10+1)(20+1)}{10} = \frac{10\times11\times21}{10\times11\times21} = 385$ Number of even divisors -12, Number of odd divisors – 4 271. Find the least number which should be added 277. If the sum of five consecutive multiples of 2 is to 7864, to make it a perfect square. 660, then find the largest number. (a) 61 (b) 57 (a) 162 (b) 130 (c) 71 (d) 79 (d) 136 (c) 125 **RRB Group-D – 11/12/2018 (Shift-III)** RRB NTPC 15.02.2021 (Shift-II) Stage Ist Ans: (b) Adding 57 to 7864, gives 7921 which is a Ans. (d) : Let five consecutive multiple of 2 perfect square of 89. 2x, 2x+2, 2x+4, 2x+6, 2x+8 Hence, it is clear that adding 57 to 7864 will make the According to the question, number a perfect square. 2x + 2x + 2 + 2x + 4 + 2x + 6 + 2x + 8 = 660The number 4050 becomes a perfect square 10x+20=660 272. when multiplying by a positive integer. Find 10x=640 the square root of the number. x = 64(a) 95 (b) 80 Hence, largest number = $2x + 8 = 2 \times 64 + 8$ (c) 90 (d) 85 =128 + 8**RRB Group-D - 01/10/2018 (Shift-III)** = 136 Ans: (c) $\therefore 4050 = 2 \times 3 \times \overline{3} \times \overline{3 \times 3} \times \overline{5 \times 5}$ How many factors of $2^7 \times 3^4 \times 5^3 \times 7$ are even ? 278. Hence, number 4050 becomes a perfect square when (b) 280 (a) 40 multiplied by $2 = 4050 \times 2 = 8100$ (c) 320 (d) 84 :. The required square root of the number 8100 RRB NTPC 31.01.2021 (Shift-I) Stage Ist $= 2 \times 3 \times 3 \times 5 = 90$ RRB NTPC 14.03.2021 (Shift-I) Stage Ist 273. Which of the following numbers is a perfect **Ans. (b)** : $2^7 \times 3^4 \times 5^3 \times 7$ Number of factors. square? = (7+1)(4+1)(3+1)(1+1)(a) 0.09 (b) 8.1 $= 8 \times 5 \times 4 \times 2$ (c) 0.025 (d) All = 320RRB NTPC 29.03.2016 Shift : 2 \therefore Number of even factors = 320 - total no. of odd **Ans:** (a) $0.09 = (0.3)^2$ factors $= 320 - \{(4+1)(3+1)(1+1)\}$ $= 320 - \{5 \times 4 \times 2\}$ Hence, only 0.09 is a perfect square number. = 320 - 40**Type - 7** = 280279. Find the digit in the unit's place of 124^{n} + 124⁽ⁿ⁺¹⁾, where n is any whole number. 274. Find the sum of prime factors of $9^6 \times 12^4 \times 7^7$ (a) 13 (b) 12 (a) 4 (b) 8 (c) 14 (d) 11 (c) 2 (d) 0 RRB NTPC 17.02.2021 (Shift-II) Stage Ist RRB Group-D 26/08/2022 (Shift-III)

Ans. (d): $124^{+} 124^{(-1)}$ On purting n=1 $= 124 + (124)^{2}$ 285. Unit digit of $(1373)^{8} - (1442)^{9}$ is - $(a) 2$ $(a) 2$ $(b) 4$ $(c) 5$ $(c) 3$ 286. UP CIT 2 Physics & Maths 22-01-2019 (Shift-I) Ans. (c): $(1373)^{8} - (1442)^{80}$ $(a) 2$ $(a) 2$ $(b) 4$ $(c) 5$ $(c) 3^{10} - (2)^{20}$ $= (3)^{8-} - (2)^{24}$ $= (3)^{8-} - (2)^{24}$ $= (3)^{8-} - (2)^{8-}$ $= (3)^{8-} - (2)^{8-} - (3)^{8-} - (2)^{8-} - (3)^{8-} - (2)^{8-} - (3)^{8-} - (2)^{8-} - (3)^{8-} - (2)^{8-} - (3)^$		
$\begin{bmatrix} -124 + (124)^2 \\ For unt digit 4 + 6 = 10 \\ Hence, It is clear that the digit come in the unit place, will be 0°. RB ALP CBT-2 Physics & Maths 22-01-2019 (Shift-I) Ans. (a): (1373)16 - (1442)26 (a) 2 (b) 1 (c) 4 (d) 0 RB NTPC 09.2.2021 (Shift-II) Stage Ist (a) 4 (b) 5 (c) 0 4 (d) 46 RB NTPC 25.07.2021 (Shift-II) Stage Ist (a) 4 (b) 5 (c) 0 4 (d) 46 RB ALP & Tec. (20-08-18 Shift-II) Stage Stag$	Ans. (d) : $124^{n} + 124^{(n+1)}$	285. Unit digit of $(1373)^{36} - (1442)^{20}$ is -
IFor unit digit $4 + 6 = 10^7$ Ifence, it is clear that the digit come in the unit place will be 0°.280. What is the unit digit of 10^6 (a) 2(a) 2(b) 1(c) 4(d) 0(a) 2(c) 4(d) 0(a) 2(c) 4(d) 0(a) 3(c) 2(c) 4(d) 0(a) 3(c) 2(c) 4(d) 0(a) 4(c) 4(d) 0(a) 4(c) 1(c) 4(d) 0(a) 4(c) 1(c) 1(c) 1(a) 4(c) 4(d) 4(a) 4(c) 4(d) 4(a) 4(b) 56(c) 64(d) 46(a) 4(b) 56(c) 64(d) 46(a) 5286. How many factors does the number 12288 have? (a) 24(b) 26(c) 1(a) 24(b) 26(a) 24(c) 1(c) 1(c) 1(c) 1(a) 1228 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2		
It lence, the isolar that the digit come in the unit place will be U: 280. What is the unit digit in the following product: 91.92x93xx99 (a) 2 (b) 1 (c) 4 (d) 0 RRB NTPC 09.02.021 (Shift-II) Stage Ist Ans. (d): (2) 92x933(-4x955956977-9888.99 It is clear that multiplying by taking unit digits of all the mumbers will give '0' i.e. where 2×5 comes then its unit digit is always zero. (a) 4 (b) 5 (c) 64 (d) 46 RRB NTPC 26.07.0201 (Shift-II) Stage Ist Ans. (a): (2) (2) (Bhift-II) Stage Ist Ans. (a): (2) (2) (Bhift-II) Stage Ist Ans. (a): (2) (2) (Bhift-II) Stage Ist (a) 5 (b) 3 (c) 6 (b) 4 RRB ALP & Tec. (20-08-18 Shift-II) The number of factors of 4200. (a) 4 (b) 5 (c) 64 (d) 46 RRB NTPC 26.07.0201 (Shift-II) Stage Ist (a) 2 (b) 1 (2) (28 (c) 2 (c) 28 (d) 22 (c) 28 (d) 20 (c) 17 RB B LP 2.3005/2019 (Shift-I) Stage Ist Ans. (b): 12288 $= 2 \times 2 $		
will be 0:(NB. (1): (1/3) $-(1/4/2)$ 280. What is the unit digit in the following product: 91x92x93xx99 (a) 2 (b) 1 (c) 4 (d) 0 (c) 4 (d) 0 (c) 1/2 (c) 93/2 (c) 93/		
$\begin{array}{c} 1 + 32 + 32 + 32 + 32 + 32 + 32 + 32 + $		Ans. (c) : $(1373)^{30} - (1442)^{20}$
$ \begin{array}{l} 91.922.933$	280. What is the unit digit in the following product?	$=(3)^{36}-(2)^{20}$
RRB NTPC 20.02.2021 (Shift-I) Stage Ist It is clear that multiplying by taking unit digitis of all the fugits is all ways zero.= $(3^4 - (2^4)^4 - ($		
Ans. (d): :: $91 \times 92 \times 93 \times 94 \times 95 \times 96 \times 97 \times 98 \times 99$ It is clear that multiplying by taking unit digits of all the numbers will give '0' i.e. where 2×5 comes then its unit digit is always zero.281. Find the number of factors of 2400. (a) 48 (b) 56 (c) 64 (d) 48 (b) 56 (c) 64 (d) 48 (b) 56 (c) 64 (d) 48 (c) $2 \times 22 \times 5 \times 5 \times 33 \times 7^{-1}$ 281. Find the number of factors (all $1 \times 22 \times 2 \times 32 \times 22 \times 22 \times 22 \times 22 \times 22$		
It is clear that multiplying by taking unit digits of all the numbers will give 0'1 c. where 2*5 comes then its unit digits is always zero. 281. Find the number of factors of 4200. (a) 4 (b) 56 (c) 64 (d) 46 RRB NTPC 26.07.2021 (Shift-II) Stage Ist (a) 24 (c) 2*2×2×3×3×7 The number of factors = (3+1)×(2+1)×(1+1)×(1+1) = 4x3 282. How many factors does the number 12288 have? (a) 24 (b) 26 (c) 28 P 2×2×2×2×2×2×2×2×2×2×2×2×2×2×3 = 4x8 (a) 24 (b) 26 (c) 28 P 2×2×2×2×2×2×2×2×2×2×2×2×2×2×3 Hence numbers of factors = (12+1)×(1+1) = 13 × 2 = 26 283. If a positive number N, when divided by 57 (a) 0 or 5 (b) 0 or 2 (b) 3 (c) 1 (a) 1 (a) (a) 1 or 5 (c) 3 or 8 (c) 4 (d) 1 or 5 (c) 3 or 8 (c) 4 (d) 1 or 5 (c) 3 or 8 (c) 4 (d) 1 or 5 (c) 4 (d) 5 (c) 124 (c) 3 or 8 284. The unit digit in 4 × 38 × 764 × 1256 is (a) 6 (c) 4 (b) 8 (c) 4 (c) 1 (c) TRB NTPC 25.01.2021 (Shift-I) Stage Ist (c) 4 (d) 1 or 5 (c) 3 or 8 (c) 4 (d) 5 (c) 240 (c) 172 (c) 141) = (14) (1+1) (1+1) = 12 (divisor) 120 = 2 ² x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) (1+1) = 2 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) (1+1) = 2 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ x ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 2 ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 1 ³ (x ³ = (1) (1+1) (1+1) = 12 (divisor) 120 = 1 ³ (x ³	· · · · · · · · · · · · · · · · · · ·	$= (3)^4 - (2)^4$
numbers will give 0° i.e. where 2×5 comes then its unit digit is always zero. $ =05$ $=5$ 281. Find the number of factors of 4200. (a) 48(b) 56(c) 64(d) 46 RB NTPC 26.07.2021 (Shift-II) Stage Ist $= 4×3×2×2$ $= 4×3$ 286. How many of the factors of 256 are perfect squares? Ans. (a) : 4200 = 2×2×2×5×5×3×7' $= 4×3×2×2$ $= 4*$ (a) 5(b) 3 282. How many factors does the number 12288 have? (a) 24(b) 26(c) 6(d) 4 RB NTPC 23.07.2021 (Shift-I) Stage Ist RB (b) 12288 = 2×2×2×2×2×2×2×2×2×2×2×2×2×2(a) 156(b) 240(c) 28(c) 272(d) 200 RRB JE - 23/05/2019 (Shift-I) 283. Ha positive number N, when divided by 5(a) 156(b) 240(c) 3 or 8(d) 1 or 5(b) 0 or 2(a) 0 or 5(b) 0 or 2(c) 3 or 8(a) 0 or 5(b) 0 or 2(c) 1(a) 0 or 5(b) 0 or 2(a) 0 or 5(b) 0 or 2(a) 0 or 5(b) 0 or 2(a) 0 or 5(b) 0 or 2(c) 3 or 8(d) 1 or 5(a) 6(b) 0 ar(a) 6(b) 0 ar $= 5x+3$ (: $x = 0,12)$ $= 5$		= 81-16
281. Find the number of factors of 4200. (a) 48 (b) 56 (c) 64 (d) 46 RBB NTPC 26.07.2021 (Shift-II) Stage Ist Ans. (a): 4200 = $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3^{3} \times 7^{1}$ The number of factors = (3+1) × (2+1)×(1+1) × (1+1) = 4×3×2×2 = 4× 282. How many factors does the number 12288 have? (a) 24 (b) 26 (c) 28 (b) 24 (c) 24 (c) 22 (c) 28 (b) 27 (c) 27 (c) 28 (b) 26 (c) 28 (c) 28 (numbers will give '0' i.e. where 2×5 comes then its unit	
RRB NTPC 26.07.2021 (Shift-II) Stage IstAns. (a): $4200 = 2 \times 2 \times 2 \times 5 \times 5 \times 3 \times 7$ The number of factors = $(3+1) \times (2+1) \times (1+1)$ $= 4 \times 3 \times 2 \times 2$ $= 48$ 282. How many factors does the number 12288have?(a) 24 (b) 26 (c) 28 (c) 28 (c) $28 \times 2 \times$		286. How many of the factors of 256 are perfect
Ans. (a): $4200 = 2 \times 2 \times 2 \times 5 \times 5 \times 3 \times 7^{-1}$ $= 2^{-2} \times 5^{-2} \times 3^{-1} \times 3^{-1} \times 1^{-1}$ $= 4 \times 3 \times 2 \times 2$ $= 48$ (a) 4 RBB ALP & Cre. (20-08-18 Shift-II) RB RLP & Cre. (20-08-18 Shift-II)(b) 25 (c) 28 (c) 6 (d) 4 RB NTPC 23.07.2021 (Shift-I) Stage Ist (a) 24 (b) 25 (c) 28 (c) 6 (d) 4 (a) 24 (c) 28 (b) 25 (c) 28 (c) 6 (d) 20 RBB NTPC 23.07.2021 (Shift-I) Stage IstAns. (b): $2288 = 2 \times 2$		
RRB ALP & Tec. (20-08-18 Shift-II)RRB ALP & Tec. (20-08-18 Shift-II)a=2/5 $x_3^3 \times 7^3$ RRB ALP & Tec. (20-08-18 Shift-II)a $x_3^3 \times 2^3 \times 2$	(,) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
The number of factors = $(3+1) \times (2+1) \times (1+1) = (3+3) \times (2+2) = 48$ 282. How many factors does the number 12288 have? (a) 24 (b) 26 (c) 28 (d) 22 RRB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (b) : 12288 = $2 \times 2 $	Ans. (a): $4200 = 2 \times 2 \times 2 \times 5 \times 5 \times 3 \times 7$ $-2^3 \times 5^2 \times 2^1 \times 7^1$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
287. Which of these numbers has the highest number of divisors?287. Which of these numbers has the highest number of divisors?287. Which of these numbers has the highest number of divisors?(a) 24 (b) 26 (c) 28 (d) 22 RB DTPC 23.07.2021 (Shift-I) Stage Ist Ans. (b) : 12288 = $2 \times 2 $		
282. How many factors does the number 12288 have? (a) 24 (b) 26 (c) 28 RRB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (b) : 12288 = $2 \times 2 $	= 48	
have? (a) 24 (b) 26 (c) 28 (d) 22 RB NTPC 23.07.2021 (Shift-I) Stage Ist (a) 156 (b) 240 (c) 172 (d) 200 RB B IF - $23/05/2019$ (Shift-I) (c) $172 = 2^{2} \times 3^{1} \times 13^{1} = (2+1) (1+1) (1+1) = 12$ (divisor) $156 = 2^{2} \times 3^{1} \times 13^{1} = (2+1) (1+1) (1+1) = 12$ (divisor) $120 = 2^{2} \times 3^{1} \times 5^{1} = (2+1) (1+1) (1+1) = 12$ (divisor) $120 = 2^{2} \times 3^{1} \times 5^{1} = (2+1) (1+1) (1+1) = 12$ (divisor) $120 = 2^{2} \times 3^{1} \times 5^{1} = (2+1) (1+1) (1+1) = 12$ (divisor) $120 = 2^{2} \times 3^{1} \times 5^{1} = (2+1) (1+1) (1+1) = 12$ (divisor) $120 = 2^{2} \times 3^{3} = (2+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 3^{3} = (2+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 5^{2} = (3+1) (2+1) = 12$ (divisor) $120 = 2^{2} \times 3^{2} \times 5^{2} \times$	282. How many factors does the number 12288	
(c) 28 (d) 22 RB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (b): 12288 = $2 \times 2 $		
RRB NTPC 23.07.2021 (Shift-I) Stage IstAns. (b) : 12288 = $2 \times 2 $		
Ans. (b): $12288 = 2 \times 2$		
Hence numbers of factors = $(12 + 1) \times (1 + 1)$ = 13×2 = 26 283. If a positive number N, when divided by 5 leaves a remainder 3, then the unit's place digit of N is? (a) 0 or 5 (b) 0 or 2 (c) 3 or 8 (d) 1 or 5 RRB NTPC 25.01.2021 (Shift-I) Stage Ist Ans. (c) : Required positive number = $5K+3$ (: $K = 0,1,2,$) = $5\times0+3 = 3$ (On putting $K = 0$) = $5\times1+3 = 8$ (On putting $K = 0$) = $5\times1+3 = 8$ (On putting $K = 0$) = $5\times1+3 = 8$ (On putting $K = 1$) Hence, unit digit of $N = 3$ or 8 284. The unit digit in $4 \times 38 \times 764 \times 1256$ is : (a) 6 (b) 8 (c) 4 (d) 5 RRB NTPC 28.12.2020 (Shift-I) Stage Ist (Ans. (b) : 4 $\times 38 \times 764 \times 1256$ $\downarrow \downarrow \downarrow \downarrow \downarrow$ 4 $\times 8 \times 4 \times 6$ = 32×24 $\downarrow \downarrow \downarrow$ = 2×44 Hence unit digit = 8 Hence unit digit =	Ans. (b) : $12288 = 2 \times 2$	
The number of the field of the		$156 = 2 \times 3 \times 13 = (2+1)(1+1)(1+1) = 12$ (divisor) $240 = 2^4 \times 2^1 \times 5^1 = (4+1)(1+1)(1+1) = 20$ (divisor)
$ \begin{array}{c} 200 = 2^3 \times 5^2 = (3+1) (2+1) = 12 \text{ (divisor)} \\ \text{Hence, It is clear that the number of the divisors of 240} \\ \text{is highest.} \\ \begin{array}{c} 200 = 2^3 \times 5^2 = (3+1) (2+1) = 12 \text{ (divisor)} \\ \text{Hence, It is clear that the number of the divisors of 240} \\ \text{is highest.} \\ \begin{array}{c} 200 = 2^3 \times 5^2 = (3+1) (2+1) = 12 \text{ (divisor)} \\ \text{Hence, It is clear that the number of the divisors of 240} \\ \text{is highest.} \\ \begin{array}{c} 200 = 2^3 \times 5^2 = (3+1) (2+1) = 12 \text{ (divisor)} \\ \text{Hence, It is clear that the number of the divisors of 240} \\ \text{is highest.} \\ \begin{array}{c} 200 = 2^3 \times 5^2 = (3+1) (2+1) = 12 \text{ (divisor)} \\ \text{Hence, It is clear that the number of the divisors of 240} \\ \text{is highest.} \\ \begin{array}{c} 200 = 2^3 \times 5^2 = (3+1) (2+1) = 12 \text{ (divisor)} \\ \text{Hence, It is clear that the number of the divisors of 240} \\ \text{is highest.} \\ \begin{array}{c} 200 = 2^3 \times 5^2 = (3+1) (2+1) = 12 \text{ (divisor)} \\ \text{Hence, It is clear that the number of factor of (3451)^{51} \times (3451)^{51} \times (3451)^{51} \times (3451)^{51} \times (3451)^{51} \times (3451)^{51} \times (351)^{43} \\ \text{(c) 1 (d) 9} \\ \end{array} \\ \begin{array}{c} 288 (c) 1000000000000000000000000000000000000$		$172 = 2^2 \times 43^1 = (2+1)(1+1)(1+1) = 6$ (divisor)
20283. If a positive number N, when divided by 5 leaves a remainder 3, then the unit's place digit is highest.283. If a positive number N, when divided by 5 leaves a remainder 3, then the unit's place digit is highest.284. The unit digit in $4 \times 38 \times 764 \times 1256$ is (a) 6 (b) 4 (c) 1(a) 288 (b) 4 (c) 1Ans. (b): (a) 6 (b) 8 (c) 4(b) 8 (c) 4 (c) 1(c) 3 or 8284. The unit digit in $4 \times 38 \times 764 \times 1256$ is: (a) 6 (c) 4 (d) 5 (c) 4 (d) 5(a) 288 (b) 168 (c) 5 (c) 4 (d) 5RRB NTPC 28.12.2020 (Shift-I) Stage IstAns. (b): (a) 2 a 2 x 24 (b) $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ (b) $4 \times 2 \times 4$ (c) 2×4 Hence unit digit = 8How many factors of $2^8 \times 3^2 \times 5^3 \times 7^5$ (c) 1RB BYPC 28.12.2020 (Shift-I) Stage IstRRB NTPC 28.12.2020 (Shift-I) Stage IstAns. (b): (a) 2 a 2 x 24 (b) $4 \times 38 \times 764 \times 1256$ (c) 4 (d) 5A 4 (b) $4 \times 8 \times 4 \times 6$ (c) $3 \times 6 \times 72 = 576$ 290. How many factors of 729 are perfect squares? (a) 5 (b) 4 (c) 3 (d) 2 (c) 3 (d) 2		$200 = 2^3 \times 5^2 = (3+1)(2+1) = 12$ (divisor)
leaves a remainder 3, then the unit's place digit of N is? (a) 0 or 5 (b) 0 or 2 (c) 3 or 8 (d) 1 or 5 RRB NTPC 25.01.2021 (Shift-I) Stage Ist Ans. (c) : Required positive number $= 5K+3 (\because K = 0, 1, 2,)$ $= 5\times0+3 = 3$ (On putting K = 0) $= 5\times1+3 = 8$ (On putting K = 1) Hence, unit digit of N = 3 or 8 284. The unit digit in 4 × 38 × 764 × 1256 is : (a) 6 (b) 8 (c) 4 (d) 5 RRB NTPC 28.12.2020 (Shift-I) Stage Ist Ans. (b) : $4 \times 38 \times 764 \times 1256$ $\downarrow \downarrow \downarrow \downarrow$ $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow \downarrow$ $= 2 \times 4$ Hence unit digit = 8 Ans. (b) : $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow \downarrow$ Ans. (b) : $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow \downarrow$ Ans. (c) : $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow \downarrow$ Ans. (b) : $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow \downarrow$ Ans. (c) : $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow \downarrow$ Ans. (b) : $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow (a)$ Ans. (b) : $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow (a)$ Ans. (b) : $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow (a)$ Ans. (b) : $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow (b)$ Ans. (c) Ans. (c) : The number of factors of $2^8 \times 3^2 \times 5^3 \times 7^5$ (b) Ans. (c) : The number of even factors (multiples) = 648 - The number of total odd factors $= 648 - \{(2 + 1)(3 + 1)(5 + 1)\}$ $= 648 - \{3 \times 4 \times 6\}$ $= 648 - 3 \times 4 \times 6\}$ = 648 - 72 - 576 290. How many factors of 729 are perfect squares? (a) 5 (b) 4 (c) 3 (d) 2 RRB Group-D - 01/10/2018 (Shift-I)		Hence, It is clear that the number of the divisors of 240
of N is? (a) 0 or 5 (b) 0 or 2 (c) 3 or 8 (d) 1 or 5 RRB NTPC 25.01.2021 (Shift-I) Stage Ist Ans. (c) : Required positive number $= 5K+3$ ($\because K = 0, 1, 2,$) $= 5\times0+3 = 3$ (On putting K = 0) $= 5\times1+3 = 8$ (On putting K = 1) Hence, unit digit of N = 3 or 8 284. The unit digit in 4 × 38 × 764 × 1256 is : (a) 6 (b) 8 8 (c) 4 (d) 5 RRB NTPC 28.12.2020 (Shift-I) Stage Ist Ans. (b) : $4 \times 38 \times 764 \times 1256$ $\downarrow \downarrow \downarrow \downarrow \downarrow$ $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow \downarrow$ $= 2 \times 4$ Hence unit digit = 8 dence unit digit dence uni	leaves a remainder 3, then the unit's place digit	
(a) $6 + 3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4$	of N is?	
(c) 3 of 8 (d) 1 of 5 (d)		
Required positive number $= 5K+3 (\because K = 0, 1, 2,)$ $= 5\times0+3 = 3$ (On putting K = 0) $= 5\times0+3 = 3$ (On putting K = 1)Hence, unit digit of N = 3 or 8 284. The unit digit in $4 \times 38 \times 764 \times 1256$ is:(a) 6(b) 8(c) 4(d) 5 RRB NTPC 28.12.2020 (Shift-I) Stage IstAns. (b) : $4 \times 38 \times 764 \times 1256$ $\downarrow \downarrow \downarrow \downarrow$ $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $= 2 \times 4$ Hence unit digit = 8 RB Group-D - 01/10/2018 (Shift-I)RB Group-D - 01/10/2018 (Shift-I)RB Group-D - 01/10/2018 (Shift-I)RB Group-D - 01/10/2018 (Shift-I)		(a) 1 $(d) 9$
$ \begin{array}{c} = 5K+3 (\because K=0,1,2,\ldots) \\ = 5\times0+3 = 3 (\text{On putting } K=0) \\ = 5\times1+3 = 8 (\text{On putting } K=1) \\ \text{Hence, unit digit of } N=3 \text{ or } 8 \end{array} \\ \hline \textbf{284. The unit digit in } 4\times38\times764\times1256 \text{ is :} \\ (a) \ 6 \qquad (b) \ 8 \\ (c) \ 4 \qquad (d) \ 5 \\ \hline \textbf{RRB NTPC 28.12.2020 (Shift-I) Stage Ist} \\ \hline \textbf{Ans. (b) :} \\ 4\times38\times764\times1256 \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ 4\times8\times4\times6 \\ = 32\times24 \\ \downarrow \qquad \downarrow \qquad \downarrow \\ = 2\times4 \\ \text{Hence unit digit } = 8 \end{array} \\ \begin{array}{c} \textbf{Ans. (c) : The number of factors of 2^8 \times 3^2 \times 5^3 \times 7^5 \text{ are even numbers?} \\ (a) \ 288 \qquad (b) \ 168 \\ (c) \ 576 \qquad (d) \ 464 \\ \hline \textbf{RRB Group-D - 06/12/2018 (Shift-II)} \\ \hline \textbf{Ans. (c) : The number of factors of 2^8 \times 3^2 \times 5^3 \times 7^5 = (8+1)(2+1)(3+1)(5+1) = 648 \\ \therefore \text{ The number of total odd factors} \\ = 648 - \{(2+1)(3+1)(5+1)\} \\ = 648 - \{3\times4\times6\} \\ = 648 - 72 = 576 \\ \hline \textbf{290. How many factors of 729 are perfect squares?} \\ (a) \ 5 \\ (b) \ 4 \\ (c) \ 3 \\ \hline \textbf{(d) } 2 \\ \hline \textbf{RRB Group-D - 01/10/2018 (Shift-I)} \\ \hline RRB Group-D - 01/10/201$		KKB KFF-51 -11/01/2019 (Siliit-1)
$= 5 \times 0+3 = 3 \text{ (On putting K = 0)} = 5 \times 1+3 = 8 \text{ (On putting K = 1)} = 1 \text{ Hence, unit digit of N = 3 or 8}$ 284. The unit digit in 4 × 38 × 764 × 1256 is : (a) 6 (b) 8 (c) 4 (d) 5 RRB NTPC 28.12.2020 (Shift-I) Stage Ist Ans. (b) : (Ans. (b) : (A × 38 × 764 × 1256 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ (A × 8 × 4 × 6 $= 32 \times 24 \\ \downarrow \downarrow \downarrow \downarrow$ (A × 8 × 4 × 6 $= 32 \times 24 \\ \downarrow \downarrow \downarrow$ (A × 6 × 1256 $\downarrow \downarrow \downarrow \downarrow$ (A × 8 × 4 × 6 $= 32 \times 24 \\ \downarrow \downarrow \downarrow$ (A × 6 × 1256 $\downarrow \downarrow \downarrow \downarrow$ (A × 8 × 4 × 6 $= 32 \times 24 \\ \downarrow \downarrow \downarrow$ (A × 8 × 4 × 6 $= 32 \times 24 \\ \downarrow \downarrow \downarrow$ (A × 6 × 1256 $\downarrow \downarrow \downarrow \downarrow$ (A × 8 × 4 × 6 $= 6648 - \{(2+1)(3+1)(5+1)\}$ (A × 6 × 1256 $= 6648 - \{(2+1)(3+1)(5+1)\}$ (A × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 ×		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
Hence, unit digit of N = 3 or 8 284. The unit digit in $4 \times 38 \times 764 \times 1256$ is :(a) 6(b) 8(c) 4(d) 5 RRB NTPC 28.12.2020 (Shift-I) Stage IstAns. (b) : $4 \times 38 \times 764 \times 1256$ $\downarrow \downarrow \downarrow \downarrow$ $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow \downarrow$ $4 \times 24 \times 4 \times 6$ $= 2 \times 44$ Hence unit digit = 8 Hence unit digit = 8289. How many multiples of $2^8 \times 3^2 \times 5^3 \times 7^5$ are even numbers?(a) 288 (b) 168(c) 576(d) 464 RRB Group-D - 06/12/2018 (Shift-II)Ans. (b) :(a) 5(b) 6(c) 576(c) 76(d) 76(e) 760(f) 760(g) 760(hence unit digit = 8)(hence unit digit = 8)(hen	$= 5 \times 1 + 3 = 8$ (On putting K = 1)	
284. The unit digit in $4 \times 38 \times 764 \times 1256$ is : (a) 6 (b) 8 (c) 4 (d) 5 RRB NTPC 28.12.2020 (Shift-I) Stage Ist Ans. (b) : $4 \times 38 \times 764 \times 1256$ $\downarrow \downarrow \downarrow \downarrow$ $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow \downarrow$ $= 2 \times 4$ Hence unit digit = 8 even numbers? (a) 288 (b) 168 (c) 576 (d) 464 RRB Group-D - 06/12/2018 (Shift-II) Ans. (c) : The number of factors of $2^8 \times 3^2 \times 5^3 \times 7^5 =$ (8 + 1) (2 + 1) (3 + 1) (5 + 1) = 648 \therefore The number of even factors (multiples) = 648 - The number of total odd factors $= 648 - \{(2 + 1) (3 + 1) (5 + 1)\}$ $= 648 - \{3 \times 4 \times 6\}$ = 648 - 72 = 576 290. How many factors of 729 are perfect squares? (a) 5 (b) 4 (c) 3 (d) 2 RRB Group-D - 01/10/2018 (Shift-I)	Hence, unit digit of $N = 3$ or 8	289. How many multiples of $2^8 \times 3^2 \times 5^3 \times 7^5$ are
(c) 4 (d) 5 RRB NTPC 28.12.2020 (Shift-I) Stage Ist Ans. (b) : $4 \times 38 \times 764 \times 1256$ $\downarrow \downarrow \downarrow \downarrow$ $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \downarrow$ Hence unit digit = 8 (c) 576 (d) 464 (c) 876 (d) 464 (c) 376 (d) 2 (c) 376 (d)	e e e e e e e e e e e e e e e e e e e	even numbers?
RRB NTPC 28.12.2020 (Shift-I) Stage IstAns. (b) :RRB Group-D - 06/12/2018 (Shift-II) $4 \times 38 \times 764 \times 1256$ \downarrow \downarrow \downarrow $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ \downarrow \downarrow $= 2 \times 4$ Hence unit digit = 8RRB Group-D - 01/10/2018 (Shift-I)RRB Group-D - 01/10/2018 (Shift-I)		
Ans. (b): $4 \times 38 \times 764 \times 1256$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ $4 \times 8 \times 4 \times 6$ $= 32 \times 24$ $\downarrow \qquad \downarrow \qquad \downarrow$ Hence unit digit = 8 $Ans. (c) : The number of factors of 2^8 \times 3^2 \times 5^3 \times 7^5 = (8+1)(2+1)(3+1)(5+1) = 648 \therefore The number of even factors (multiples) = 648 - The number of total odd factors = 648 - \{(2+1)(3+1)(5+1)\} = 648 - \{3 \times 4 \times 6\} = 648 - 72 = 576 290. How many factors of 729 are perfect squares? (a) 5 (b) 4(c) 3 (d) 2RRB Group-D - 01/10/2018 (Shift-I)$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ans. (c) : The number of factors of $2^8 \times 3^2 \times 5^3 \times 7^5 =$
$ \downarrow \qquad \downarrow $		(8+1)(2+1)(3+1)(5+1) = 648
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$= 32 \times 24$ $= 32 \times 24$ $= 2 \times 4$ Hence unit digit = 8 $= 648 - \{3 \times 4 \times 6\}$ $= 648 - 72 = 576$ $= 648 - 72 = 576$ $= 648 - 72 = 576$ $(a) 5 (b) 4$ $(c) 3 (d) 2$ RRB Group-D - 01/10/2018 (Shift-I)		
$= 32 \times 24$ $\downarrow \qquad \downarrow \qquad = 648 - 72 = 576$ 290. How many factors of 729 are perfect squares? (a) 5 (b) 4 (c) 3 (d) 2 RRB Group-D - 01/10/2018 (Shift-I)		
$= 2 \times 4$ Hence unit digit = 8 $= 2 \times 4$ RRB Group-D - 01/10/2018 (Shift-I)	$=$ 32 \times 24	
Hence unit digit = 8 (c) 3 (d) 2 RRB Group-D - $01/10/2018$ (Shift-I)	$\downarrow \downarrow \downarrow$	
RRB Group-D - 01/10/2018 (Shift-I)	$= 2 \times 4$	
	Hence unit digit = 8	

Ans. (c) : The factors of 729,	295. Calculate the total prime factors in the product
3 729	of $\{(8)^{10} \times (9)^7 \times 7^8\}$
3 243	
$\frac{3}{3}$ $\frac{2}{81}$	(a) 45 (b) 54 (c) 52 (d) 65
$\frac{3}{3}$ $\frac{31}{27}$	RRB NTPC 18.04.2016 Shift : 2
$ \frac{\overline{3} 9}{3 3} \\ \underline{7} 1 $	Ans : (c) $(8)^{10} \times (9)^7 \times 7^8$
$\frac{3}{3}$	$= ((2)^3)^{10} \times ((3)^2)^7 \times (7)^8$
1	
Perfect squares $=\overline{3\times3}\times\overline{3\times3}\times\overline{3\times3}$	$= 2^{30} \times 3^{14} \times 7^{8}$
Hence, total 3 factors of 729 (9,9,9) are perfect squares.	Hence, the total prime factors = $30+14+8 = 52$
291. How many multiples of $2^9 \times 3^5 \times 5^4 \times 7^6$ are odd	296. Calculate the total prime factors in the product $a_{1}(x_{1})^{2} = a_{1}(x_{1})^{2}$
numbers?	of $\{(16)^7 \times (27)^6 \times 5^9\}$
(a) 288 (b) 144	(a) 28 (b) 43 (c) 55 (d) 56
(c) 210 (d) 140	RRB NTPC 16.04.2016 Shift : 2
RRB Group-D – 06/12/2018 (Shift-III)	Ans : (c) Total prime factors $\{(16)^7 \times (27)^6 \times 5^9\}$
Ans. (c) : The required odd multiple number	
$= (5+1) \times (4+1) \times (6+1)$	$= (2^4)^7 \times (3^3)^6 \times 5^9$
$= 6 \times 5 \times 7 = 210$	$= 2^{28} \times 3^{18} \times 5^9$
292. Find the last digit of 213^6 ?	= 28 + 18 + 9 = 55
(a) 6 (b) 3 (c) 7 (d) 9	297. Find the unit digit in the product of $(4211)^{102} \times$
(c) / (u) 9 RRB Group-D – 05/12/2018 (Shift-II)	(361) ⁵²
Ans. (d) The unit digit of 213^6	(a) 3 (b) 1 (d) 7
$213^6 = (213^4 \times 213^2)$	(c) 4 (d) 7 RRB NTPC 16.04.2016 Shift : 3
$1 \times 9 = 9$	Ans : (b)
293. The smallest natural number, by which 216	The required unit digit in $(4211)^{102} \times (361)^{52}$
should be multiplied, so that the number of	The required unit digit in $(4211)^{102} \times (361)^{52}$ $\Rightarrow (1)^{102} \times (1)^{52} = 1 \times 1 = 1$
factors of the product is odd?	298. Find the unit digit in the following
(a) 4 (b) 6	$(1234)^{102} + (1234)^{103}$
(c) 12 (d) 8	(a) 2 (b) 4
RRB Group-D – 11/12/2018 (Shift-I)	
Ans. (b) $(1 + 1)^{-1} = (1 + 1)^$	RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$
The number of multiples of $(216 = 2^3 \times 3^3)$ is: = $(3+1)(3+1) = 4 \times 4 = 16$ (even)	The unit digit,
The smallest natural number, by which 216 should be	$= (4)^{102} + (4)^{103}$
multiplied, so that the number of factors of the product	$= (4^2)^{51} + (4^2)^{51} \times 4^1$
is odd = 6	$=(16)^{51}+(16)^{51}\times 4^{1}$
\therefore Required number of multiples in 216 × 6 = 2 ⁴ × 3 ⁴	$= 6 + 6 \times 4$
= (4 + 1) (4 + 1) = 25	= 6 + 24 = 30
$= (4+1) (4+1) = 25$ 294. What is the unit digit of $[4523^{1632} \times 2224^{1632} \times 224^{1632} \times $	Hence, the unit digit will be 0.
3225 ¹⁶³²]	299. How many factors of 512 are perfect squares.
(a) 1 (b) 0	(a) 6 (b) 4
	(c) = 3 $(d) = 5$
(c) 4 (d) 5	(c) 3 (d) 5 RRB Group-D – $28/09/2018$ (Shift-I)
	RRB Group-D – 28/09/2018 (Shift-I)
(c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3	RRB Group-D – 28/09/2018 (Shift-I) Ans : (d) The factors of 512
(c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) $\left[(4523)^{1632} \times (2224)^{1632} \times (3225)^{1632} \right]$	RRB Group-D - 28/09/2018 (Shift-I)Ans : (d) The factors of 512 $= 1, 2, 4, 8, 16, 32, 64, 128, 256, 512$ In which = 1, 4, 16, 64, 256 are perfect squares
(c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3	RRB Group-D – 28/09/2018 (Shift-I)Ans : (d) The factors of 512 $= 1, 2, 4, 8, 16, 32, 64, 128, 256, 512$ In which = 1, 4, 16, 64, 256 are perfect squaresSo, the total number of perfect squares factors is 5.
(c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) $\left[(4523)^{1632} \times (2224)^{1632} \times (3225)^{1632} \right]$	RRB Group-D – 28/09/2018 (Shift-I) Ans : (d) The factors of 512 $= 1, 2, 4, 8, 16, 32, 64, 128, 256, 512$ In which = 1, 4, 16, 64, 256 are perfect squares So, the total number of perfect squares factors is 5. 300. Which is the smallest positive integer or
(c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) $\left[(4523)^{1632} \times (2224)^{1632} \times (3225)^{1632} \right]$ $\Rightarrow (3)^4 \times (4)^4 \times (5)^4$	RRB Group-D – 28/09/2018 (Shift-I) Ans : (d) The factors of 512 = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 In which = 1, 4, 16, 64, 256 are perfect squares So, the total number of perfect squares factors is 5. 300. Which is the smallest positive integer or natural number, when divides 1920 so that the
(c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) $\left[(4523)^{1632} \times (2224)^{1632} \times (3225)^{1632} \right]$ $\Rightarrow (3)^4 \times (4)^4 \times (5)^4$ $81 \times 256 \times 625$	RRB Group-D – 28/09/2018 (Shift-I)Ans : (d) The factors of 512= 1, 2, 4, 8, 16, 32, 64, 128, 256, 512In which = 1, 4, 16, 64, 256 are perfect squaresSo, the total number of perfect squares factors is 5.300. Which is the smallest positive integer or natural number, when divides 1920 so that the number of factors of quotient is odd?
(c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) $[(4523)^{1632} \times (2224)^{1632} \times (3225)^{1632}]$ $\Rightarrow (3)^4 \times (4)^4 \times (5)^4$ $81 \times 256 \times 625$ $1 \times 6 \times 5$	RRB Group-D – 28/09/2018 (Shift-I)Ans : (d) The factors of 512= 1, 2, 4, 8, 16, 32, 64, 128, 256, 512In which = 1, 4, 16, 64, 256 are perfect squaresSo, the total number of perfect squares factors is 5.300. Which is the smallest positive integer or natural number, when divides 1920 so that the number of factors of quotient is odd? (a) 40 (b) 10
(c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) $\left[(4523)^{1632} \times (2224)^{1632} \times (3225)^{1632} \right]$ $\Rightarrow (3)^4 \times (4)^4 \times (5)^4$ $81 \times 256 \times 625$	RRB Group-D – 28/09/2018 (Shift-I)Ans : (d) The factors of 512= 1, 2, 4, 8, 16, 32, 64, 128, 256, 512In which = 1, 4, 16, 64, 256 are perfect squaresSo, the total number of perfect squares factors is 5.300. Which is the smallest positive integer or natural number, when divides 1920 so that the number of factors of quotient is odd?

Ans. (b) : According to the question,	334. If the first number and the second number is 25% and 50% more than the third number
Girls $\left(15\left(3\right)17\right)$ Young	respectively, find the ratio between the first and second number.
Number of young girls in the group = $(20+18) - 35$ = $38 - 35 = 3$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
330. X, Y and Z together earn ₹ 2,400/- in 15 days,	RRB JE - 27/05/2019 (Shift-I) Ans : (a) Let the third number be 100.
X and Y together earn ₹ 1,840/- in 16 days. Y	Then according to the question the first number = 125
and Z together earn ₹ 1,530/- in 18 days. What is the daily earning (in ₹) of Y?	And the second number $= 150$
(a) ₹50 (b) ₹40	Hence, required ratio = First number : Second number = 125 : 150
(c) ₹60 (d) ₹30	= 5:6
RRB NTPC 05.03.2021 (Shift-I) Stage Ist	
Ans. (b) :	335. Solve: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$
Amount earned by X, Y and Z in 1 day $=\frac{2400}{15}=160$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Amount earned by X, Y and Z in 1 day $=\frac{1840}{16}=115$	RRB JE - 23/05/2019 (Shift-I)
1530 of	Ans: (a)
Amount earned by Y and Z in 1 day $=\frac{1530}{18}=85$	$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$
Daily earning of $Y =$ (Daily earning of X and Y	This is a geometrical progression-
together) + (Daily earning of Y and Z together) –	$a = 1, r = \frac{1}{2}$
(Daily earning by X, Y and Z together) = $115 + 85 - 160$	2
= 40	Let the sum be S.
$221 \text{Th} \qquad \cdot 1 \cdot (1 \cdot 27^3 \cdot 1)$	$S = \frac{a}{1-r}$, $S_{\infty} = \frac{1}{1-\frac{1}{2}}$
331. The remainder in the expression $27\frac{3}{4}$ is:	Δ.
(a) 6 (b) 4 (d) 8	$\mathbf{S}_{\infty} = \frac{1}{\underline{1}} = 2 \qquad \qquad \mathbf{S}_{\infty} = 2$
(c) 3 (d) 8 RRB NTPC 15.02.2021 (Shift-I) Stage Ist	$B_{\infty} = \frac{1}{2}$ $B_{\infty} = \frac{1}{2}$
Ans. (c) : In the given expression	
Dividend = quotient \times divisor + remainder	336. In a school picnic group, 2/9 th part were adults and the number of children was more than
$= 27 \times 4 + 3$ $\therefore \text{ Remainder} = 3$	adults by 95. How many children were present
332. A maximum of how many pieces of exact 17 cm	there?
length can be cut from a 960 cm long rod?	(a) 95 (b) 133 (c) 190 (d) 103
(a) 60 (b) 58 (c) 54 (d) 56	RRB JE - 27/06/2019 (Shift-I)
RRB NTPC 08.02.2021 (Shift-I) Stage Ist	Ans : (b) Let the total number of people in the group =
Ans. (d) : According to question	$\begin{vmatrix} x \\ 2 \\ 2x \end{vmatrix}$
Number of pieces $=\frac{960}{17}=56+\frac{8}{17}$	The number of adults = $x \times \frac{2}{9} = \frac{2x}{9}$
Hence, number of pieces of exact 17 cm length will be	The number of children = $x - \frac{2x}{9} = \frac{9x - 2x}{9} = \frac{7x}{9}$
56. 333. If $3/11 < x/3 < 7/11$, which of the following can	
be value of 'x'?	$\frac{7x}{9} - \frac{2x}{9} = 95$
(a) 0.5 (b) 1 (c) 2	
(c) 2 (d) 3 RRB JE - 23/05/2019 (Shift-I)	$\frac{7x-2x}{9} = 95$
Ans : (b) From options,	$\frac{5x}{9} = 95$
When X = 0.5 then 0.272 < 0.166 < 0.636 (False) When X = 1 then 0.272 < 0.333 < 0.636 (True)	,
When $X = 1$ then $0.272 < 0.535 < 0.636$ (True) When $X = 2$ then $0.272 < 0.666 < 0.636$ (False)	x = 171
When $X = 3$ then $0.272 < 1 < 0.636$ (False)	Hence, the number of children $=\frac{7x}{9} = \frac{7}{9} \times 171 = 133$
Hence, It is clear that the value of x will be 1.	

337. Find the value of 52- 8-20 =	$\begin{pmatrix} 2 & 8 \end{pmatrix}$
(a) 45 (b) 40	Ans. (c) $\left(\frac{3}{10} + \frac{8}{15}\right)$
(c) 65 (d) 64	
RRB RPF Constable -18/01/2019 (Shift-I)	$=\frac{9+16}{30}=\frac{25}{30}=\frac{5}{6}$
Ans : (b) The given value = $52 - 8 - 20 $	
= 52- -12	$\frac{5}{6}$ is directly proportional to $\frac{1}{5} = \frac{6}{5}$
-A = A (The value of Mod is always +ve.)	$\frac{5}{6}$
Hence, the required value $= 52 - 12 = 40$	342. Subtract 64.37 out of 1000.03 and add the
338. If one dozen of apples weigh 1.8 kg, then find	resultant obtained from it to the sum of 3.4 and
the number of apples of three boxes whose total	7.56. What will be its value?
weight is 23.25 kg.	(a) 948.62 (b) 944.62 (c) 945.62 (d) 946.62
(a) 280 (b) 155	RRB Group-D – 08/10/2018 (Shift-III)
(c) 465 (d) 215 RRB RPF-SI -13/01/2019 (Shift-I)	Ans : (d) According to the question,
Ans : (b) Total weight = 23.25 kg	1000.03 - 64.37 = 935.66
	And
One apples's weight $=\frac{1.8}{12}$ kg	935.66 + (3.4 + 7.56) = 935.66 + 10.96 = 946.62
The required number of apples,	343. Seema got ₹ 50 from her father and purchased
$=\frac{\text{Total weight}}{1 \text{ apple's weight}} = \frac{23.25 \times 12}{1.8} = 155$	toffee for ₹ 15. Her mother gave her ₹ 30 but
	her brother took ₹ 42 from her. How much money did she have left?
Number of apples in the box = 155	(a) ₹ 23 (b) ₹ 24
339. Pick out the set that forms the factors of 36. $(2, 2, 4, 6)$	(c) ₹ 20 (d) ₹ 25
(a) $(2, 3, 4, 6, 9)$ (b) $(2, 3, 4, 6)$ (c) $(2, 3, 4, 6, 9, 12, 18)$ (d) $(2, 3, 4, 6, 9, 12)$	RRB Group-D – 23/09/2018 (Shift-II) Ans : (a) Total sum of money that Seema have left
$\frac{(0)}{(2, 3, 4, 0, 7, 12, 10)} (1) (2, 3, 4, 0, 7, 12)$ RRB JE - 27/05/2019 (Shift-III)	= 50-15+30-42 = 80-57 = ₹ 23
Ans : (c) All the factors of 36 = 1, 2, 3, 4, 6, 9, 12, 18, 36	344. ₹ 150 of Amit's Pocket money was spent on a
Hence, the required set that is formed by the factors of	pair of shoes and ₹ 75 on a watch. The total
36 will be = (2, 3, 4, 6, 9, 12, 18)	amount spent was three-fourth of his total
340. The square of a number is 3 more than twice	pocket money. What was the amount received by Amit as pocket money?
the number. What is the possible number.	(a) ₹ 300 (b) ₹ 400
(a) $1 \text{ or } 3$ (b) $1 \text{ or } -3$	(c) ₹ 375 (d) ₹ 250
(c) -1 or -3 (d) -1 or 3	RRB ALP CBT-2 Electrician 22-01-2019 (Shift-I)
RRB Group-D $-$ 15/10/2018 (Shift-I) Ans : (d) Let the number be <i>x</i>	Ans. (a) : Amount spent on shoes = $₹$ 150 Amount spent on watch = $₹$ 75
According to the question,	Let Amit's pocket money =₹ x
$x^2 = 2x + 3$	According to the question,
$x^2 - 2x - 3 = 0$	-
$x^2 - 3x + x - 3 = 0$	$\frac{3x}{4} = 150 + 75$
x (x - 3) + 1(x - 3) = 0 (x - 2) (x + 1) = 0	$3x = 4 \times 225$
(x - 3) (x + 1) = 0 x - 3 = 0	$x = \frac{900}{3}$
x = 3	5
x + 1 = 0	x =₹ 300
x = -1	So, Amit got the amount for pocket money = ₹ 300
Hence, the possible number is -1 or 3.	345. Geeta weighs 11.235 kg. Her sister weighs 1.4 times her weight. Find the total weight of both.
341. $\left(\frac{3}{10} + \frac{8}{15}\right)$ is directly proportional to-	(a) 15.729 kg (b) 25.964 kg (c) 26.964 kg (d) 28.964 kg
(a) $\frac{11}{11}$ (b) $\frac{11}{11}$	RRB NTPC 29.03.2016 Shift : 1
(a) $\frac{11}{10}$ (b) $\frac{11}{15}$	Ans :(c) Geeta's weight = 11.235 kg
(c) 6 (d) 3	$\therefore \text{ The weight of Geeta's sister} = 11.235 \times 1.4 = 15.729 \text{ kg}$
(c) $\frac{6}{5}$ (d) $\frac{3}{15}$	The total weight of both of them
RRB Group-D – 02/11/2018 (Shift-I)	$= 11.235 + 15.729 = 26.964 \mathrm{kg}$