shop.ssbcrack.com

NDA \& NA

Solved Papers eBook

$$
(2013-2018)
$$

Features:
10 NDA SOLVED PREVIOUS PAPERS
NDA 12018 SOLVED PAPER
ULTIMATE eBOOK FOR NDA PREP
MUST READ FOR NDA 2018 \& 2019

NDA CUT OFF MARKS

National Defence Academy \& Naval Academy Examination (II), 2017

Minimum qualifying standard/marks at the written stage and marks secured by the last candidate in the Merit order at final stage of the examination.

Minimum qualifying standard/marks at the written stage (out of 900 marks)	Marks secured by the last candidate in the Merit order (out of 1800 marks)
258	624
(With at least 25\% marks in each subject)	

National Defence Academy and Naval Academy Examination (I), 2017
Minimum Qualifying standard approved at the written stage and marks secured by the last recommended candidate at final stage of the Examination:

Minimum qualifying standard approved at the written stage (Out of 900 marks)	Marks secured by the last finally recommended candidate (Out of 1800 marks)
342	708
With at least 25% marks in each Subject)	

NDA CUT OFF MARKS

National Defence Academy and Naval Academy Examination (I), 2016

Minimum Qualifying standard approved at the written stage and marks secured by the last recommended candidate at final stage of the examination:

Minimum qualifying standard approved at the written stage (Out of 900 marks)	Marks secured by the last finally recommended candidate (Out of 1800 marks)
288 (With at least 25% marks in each Subject)	656

National Defence Academy \& Naval Academy Examination (III), 2016

Minimum qualifying standard/marks at the written stage and marks secured by the last candidate in the merit order at final stage of the examination

Minimum qualifying standard/marks at the written stage (out of 900 marks)	Marks secured by the last candidate in the merit order (out of 1800 marks)
229 (With at least 20\% marks in each subject)	602

NDA EXAM QUESTION PAPER DETAILS

Code	Subject	Marks	Duration
01	Mathematics	300	2 and $1 / 2$ hour.
02	General Ability	600	2 and $1 / 2$ hour.
	SSB Interview	900	$4-5$ days.
Total		1800	

NDA EXAM SYLLABUS

NDA exam has two papers - Mathematics and General Ability Test.
The Paper - 1 i,e. Mathematics comprises topics including (1) Algebra, (2) Matrics and Determinants, (3) Trigonometry, (4) Analytical Geometry of Two and Three Dimensions, (5) Differential Calculus. (6) Integral Calculus and Differential Equations, (7) Victor Algebra and (8) Statistics and Probability.

The Paper - 2 i,e. General Ability Test comprises topics including (Part A) English and (Part B) General Knowledge. The syllabus for English covers several aspects such as comprehension, cohesion, grammar and usage and vocabulary. The syllabus for General Knowledge is broadly divided into Social Studies, Current Events, Chemistry, Physics, Geography and General Science.

HOW TO USE THIS eBOOK

1. DOWNLOAD THE BOOK AND KEEP IT IN YOUR SMARTPHONE.
2. EVERYDAY AFTER YOU WAKEUP, TAKE 10 QUESTIONS EACH FROM MATHS AND GENERAL ABILITY TEST PAPERS.
3. TRY TO SOLVE THEM ON A PAPER AND CROSS CHECK THE ANSWERS.
4. IF YOU ARE NOT ABLE TO FIND THE SOLUTION, REFER THE eBOOK AGAIN AND SOLVE IT.
5. REPEAT THE SAME IN THE EVENING AND AT NIGHT BEFORE YOU SLEEP.
6. SLOWLY INCREASE THE NUMBER OF QUESTIONS YOU SOLVE.
7. IF YOU SOLVE 50 QUESTIONS IN A DAY, YOU CAN SOLVE AROUND 1500 QUESTIONS IN A MONTH AND MAY BE MORE.
8. REMEMBER THESE ARE ACTUAL QUESTIONS, WHAT YOU WILL FACE IN THE NDA EXAM WILL BE SIMILAR TO THESE QUESTIONS.
9. SOLVING THESE QUESTIONS WILL HELP YOU TO BOOST YOUR PREPARTING IN NO TIME.

GET LET'S CRACK NDA EXAM BOOK

1. If $n \in N$, then
$121^{n}-21^{n}+1900^{n}-(-4)^{n}$ is divisible by which of the following?
a. 1904
b. 2000
c. 2002
d. 2006
2. If $n=(2017)!$, then, what is
$\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\ldots+\frac{1}{\log _{2017} n}$ equal to?
a. 0
b. 1
c. $\frac{n}{2}$
d. n
3. In the expansion of $(1+x)^{43}$, if the coefficients of $(2 r+1)^{t h}$ and $(r+2)^{t h}$ terms are equal, then what is the value of $r(r \neq 1)$?
a. 5
b. 14
c. 21
d. 22
4. What is the principal argument of $(-1-i)$, where $i=\sqrt{-1}$?
a. $\frac{\pi}{4}$
b. $\frac{-\pi}{4}$
c. $\frac{-3 \pi}{4}$
d. $\frac{3 \pi}{4}$
5. Let α and β be real numbers and z be a complex number. If $z^{2}+\alpha z+\beta=0$ has two distinct non-real roots with real roots $\operatorname{Re}(z)=1$, then it is necessary that
a. $\beta \in(-1,0)$
b. $\beta \in(1, \infty)$
c. $|\beta|=1$
d. $\beta \in(0,1)$
6. Let A and B be subsets of X and $C=$ $\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)$, where A^{\prime} and B^{\prime} are complements of A and B respectively in X. What is C equal to?
a. $\left(A \cup B^{\prime}\right)-\left(A \cap B^{\prime}\right)$
b. $\left(A^{\prime} \cup B\right)-\left(A^{\prime} \cap B\right)$
c. $(A \cup B)-(A \cap B)$
d. $\left(A^{\prime} \cup B^{\prime}\right)-\left(A^{\prime} \cap B^{\prime}\right)$
7. How many numbers between 100 and 1000 can be formed with the digits 5,6 , $7,8,9$ if the repetition of digits is not allowed?
a. 3^{5}
b. 5^{3}
c. 120
d. 60
8. The number of non-zero integral solutions of the equation $|1-2 i|^{x}-5^{x}$ is
a. Zero (no solution)
b. One
c. Two
d. Three
9. If the ratio of AM to GM of two positive numbers a and b is 5:3, then $a: b$ is equal to
a. $3: 5$
b. $2: 9$
c. $9: 1$
d. 5:3
10. If coefficients of a^{m} and a^{n} in the expansion of $(1+a)^{m+n}$ are α and β, then which one of the following is correct?
a. $\alpha=2 \beta$
b. $\alpha=\beta$
c. $2 \alpha=\beta$
d. $\alpha=(m+n)^{\beta}$
11. If $x+\log _{15}\left(1+3^{x}\right)=x \log _{15} 5+$ $\log _{15} 12$, where x is an integer, then what is x equal to?
a. -3
b. 2
c. 1
d. 3
12. How many four-digit numbers divisible by 10 can be formed using 1 , $5,0,6,7$ without repetition of digits?
a. 24
b. 36
c. 44
d. 64

Consider the information given below and

 answer the two (02) items that follow:In a class, 54 students are good in Hindi only, 63 students are good in Mathematics only, and 41 students are good in English only. There are 18 students who are good in both Hindi and Mathematics. 10 students are good in all three subjects.
13. What is the number of students who are good in either Hindi or Mathematics but not in English?
a. 99
b. 107
c. 125
d. 130
14. What is the number of students who are good in Hindi and Mathematics but not in English?
a. 18
b. 12
c. 10
d. 8
15.If α and β are different complex numbers with $|\alpha|=1$, then what is $\left|\frac{\alpha-\beta}{1-\alpha \beta}\right|$ equal to?
a. $|\beta|$
b. 2
c. 1
d. 0
16. The equation $|1-x|+x^{2}=5$ has
a. a rational root and an irrational root
b. two rational roots
c. two irrational roots
d. no real roots
17. The binary number expression of the decimal number 31 is
a. 1111
b. 10111
c. 11011
d. 11111
18. What is $i^{1000}+i^{1001}+i^{1002}+i^{1003}$ equal to (where $i=\sqrt{-1}$)?
a. 0
b. i
c. $-i$
d. 1
19. What is
$\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\ldots+\frac{1}{\log _{100} n}$ equal to $(n \neq 1)$?
a. $\frac{1}{\log _{100!} n}$
b. $\frac{1}{\log _{99}!}$
c. $\frac{99}{\log _{100!} n}$
d. $\frac{99}{\log _{99!} n}$
20. The modulus-amplitude form of $\sqrt{3}+i$, where $i=\sqrt{-1}$ is
a. $2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
b. $2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
c. $4\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
d. $4\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
21. What is the number of non-zero terms in the expansion of
$(1+2 \sqrt{3 x})^{11}+(1-2 \sqrt{3 x})^{11}$
(after simplification)?
a. 4
b. 5
c. 6
d. 11
22. What is the greatest integer among the following by which the number $5^{5}+7^{5}$ is divisible?
a. 6
b. 8
c. 11
d. 12
23.If $x=1-y+y^{2}-y^{3}+\ldots$ up to infinite terms, where $|y|<1$, then which one of the following is correct?

$$
\text { a. } x=\frac{1}{1+y}
$$

b. $x=\frac{1}{1-y}$
c. $x=\frac{y}{1+y}$
d. $x=\frac{y}{1-y}$
24. What is the inverse of the matrix $A=$ $\left(\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right) ?$
a. $\left(\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$
b. $\left(\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right)$
c. $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right)$
d. $\left(\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$
25. If A is a 2×3 matrix and AB is a 2×5 matrix, then B must be a
a. 3×5 matrix
b. 5×3 matrix
c. 3×2 matrix
d. 5×2 matrix
26. If $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$ and $\mathrm{A}^{2}-\mathrm{kA}-\mathrm{I} 2=\mathrm{O}$, where $I 2$ is the 2×2 identity matrix, then what is the value of k ?
a. 4
b. -4
c. 8
d. -8
27. What is the number of triangles that can be formed by choosing the vertices from a set of 12 points in a plane, seven of which lie on the same straight line?
a. 185
b. 175
c. 115
d. 105
28. What is
$C(n, r)+2 C(n, r-1)+C(n, r)$ equal to?
a. $C(n+1, r)$
b. $C(n-1, r+1)$
c. $C(n, r+1)$
d. $C(n+2, r)$
29. Let $[x]$ denote the greatest integer function. What is the number of solutions of the equation $x^{2}+4 x+[x]=0$ in the interval [0,2]?
a. Zero (no solution)
b. One
c. Two
d. Three
30. A survey of 850 students in a University yields that 680 students like music and 215 like dance. What is the least number of students who like both music and dance?
a. 40
b. 45
c. 50
d. 55
31. What is the sum of all two-digit numbers which when divided by 3 leave 2 as the remainder?
a. 1565
b. 1585
c. 1635
d. 1655
32. If $0<a<1$, the value of $\log _{10 a}$ is negative. This is justified by
a. Negative power of 10 is less than 1
b. Negative power of 10 is between 0 and 1
c. Negative power of 10 is positive
d. Negative power of 10 is negative
33. The third term of a GP is 3 . What is the product of the first 5 terms?
a. 216
b. 226
c. 243
d. Cannot be determined due to insufficient data
34. If $x, \frac{3}{2}, z$ are in AP; $x, 3, z$ are in GP; then which one of the following will be
in HP?
a. $\mathrm{x}, 6, \mathrm{z}$
b. $x, 4, z$
c. $\mathrm{z}, 2, \mathrm{z}$
d. $\mathrm{x}, 1, \mathrm{z}$
35. What is the value of the sum
$\sum_{n-2}^{11}\left(i^{n}+i^{n+1}\right)$
where $i=\sqrt{-1}$
a. I
b. 2 i
c. -2 i
d. $1+\mathrm{i}$
36. If $\sin x=\frac{1}{\sqrt{5}}, \sin y=\frac{1}{\sqrt{10}}$, where $0<x<\frac{\pi}{2}$, then what is $(x+y)$ equal to?
a. π
b. $\frac{\pi}{2}$
c. $\frac{\pi}{4}$
d. 0
37. What is $\frac{\sin 5 x-\sin 3 x}{\cos 5 x+\cos 3 x}$ equal to?
a. $\sin x$
b. $\cos x$
c. $\tan x$
d. $\cot x$
38. What is $\sin 105^{\circ}+\cos 105^{\circ}$ equal to?
a. $\sin 50^{\circ}$
b. $\cos 50^{\circ}$
c. $\frac{1}{\sqrt{2}}$
d. 0
39. In a triangle ABC if $a=2, b=3$ and $\sin A=2 / 3$, then what is angle B equal to?
a. $\pi / 4$
b. $\pi / 2$
c. $\pi / 3$
d. $\pi / 6$
40. What is the principal value of

$$
\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right) ?
$$

a. $\pi / 4$
b. $\pi / 2$
c. $\pi / 3$
d. $2 \pi / 3$
41. If $x, x-y$ and $x+y$ are the angles of a triangle (not an equilateral triangle) such that $\tan (x-y)$, $\tan x$, and $\tan (x+y)$ are in GP, what is x equal to?
a. $\pi / 4$
b. $\pi / 3$
c. $\pi / 6$
d. $\pi / 2$
42. ABC is a triangle inscribed in a circle with centre O . Let $\alpha=\angle \mathrm{BAC}$, where $45^{\circ}<\alpha<90^{\circ}$. Let $\beta=\angle$ BOC. Which one of the following is correct?
a. $\cos \beta=\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}$
b. $\cos \beta=\frac{1+\tan ^{2} \alpha}{1-\tan ^{2} \alpha}$
c. $\cos \beta=\frac{2 \tan \alpha}{1+\tan ^{2} \alpha}$
d. $\sin \beta=2 \sin ^{2} \alpha$
43. If a flag-staff 6 m height placed on the top of a tower throws a shadow of $2 \sqrt{3}$ m along the ground, then what is the angle that the sun makes with the ground?
a. 60°
b. 45°
c. 30°
d. 15°
44. What is $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{3}{5}\right)$ equal to?
a. 0
b. $\pi / 4$
c. $\pi / 3$
d. $\pi / 2$
45. A spherical balloon of radius r subtends an angle α at the eye of an observer, while the angle of elevation of its centre is β. What is the height of the centre of the balloon (neglecting the height of the observer)?
a. $\frac{r \sin \beta}{\sin \left(\frac{\alpha}{2}\right)}$
b. $\frac{r \sin \beta}{\sin \left(\frac{\alpha}{4}\right)}$
c. $\frac{\mathrm{r} \sin \left(\frac{\beta}{2}\right)}{\sin \alpha}$
d. $\frac{r \sin \alpha}{\sin \left(\frac{\beta}{2}\right)}$
46. If $\frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}$, then what is $\frac{\tan x}{\tan y}$ equal to?
a. $\frac{\mathrm{a}}{\mathrm{b}}$
b. $\frac{\mathrm{b}}{\mathrm{a}}$
c. $\frac{a+b}{a-a}$
d. $\frac{a-b}{a+a}$
47. If $\sin \alpha+\sin \beta=0=\cos \alpha+\cos \beta$, where $0<\beta<\alpha<2 \pi$, then which one of the following is correct?
a. $\alpha=\pi-\beta$
b. $\alpha=\pi+\beta$
c. $\alpha=2 \pi-\beta$
d. $2 \alpha=\pi+2 \beta$
48. Suppose $\cos A$ is given. If only one value of $\cos \left(\frac{A}{2}\right)$ is possible, then A must be
a. An odd multiple of 90°
b. A multiple of 90°
c. An odd multiple of 180°
d. A multiple of 180°
49. If $\cos \alpha+\cos \beta+\cos \gamma=0$, where $0<\alpha \leq \frac{\pi}{2}, 0<\beta \leq \frac{\pi}{2}, 0<\gamma \leq \frac{\pi}{2}$, then what is the value of $\sin \alpha+\sin \beta+$ $\sin \gamma$?
a. 0
b. 3
c. $\frac{5 \sqrt{2}}{2}$
d. $\frac{3 \sqrt{2}}{2}$
50. The maximum value of
$\sin \left(x+\frac{\pi}{5}\right)+\cos \left(x \frac{\pi}{5}\right)$, where $x \in$ $\left(0, \frac{\pi}{2}\right)$, is attained at
a. $\frac{\pi}{20}$
b. $\frac{\pi}{15}$
c. $\frac{\pi}{10}$
d. $\frac{\pi}{2}$
51. What is the distance between the points which divide the line segment joining $(4,3)$ and $(5,7)$ internally and externally in the ratio $2: 3$?
a. $\frac{12 \sqrt{17}}{5}$
b. $\frac{13 \sqrt{17}}{5}$
c. $\frac{\sqrt{17}}{5}$
d. $\frac{6 \sqrt{17}}{5}$
52. What is the angle between the straight lines
$\left(m^{2}-m n\right) y=\left(m n+n^{2}\right) x+n^{3}$ and $\left(m n+m^{2}\right) y=\left(m n-n^{2}\right) x+m^{3}$, where $\mathrm{m}>\mathrm{n}$?
a. $\tan ^{-1}\left(\frac{2 m n}{m^{2}+\mathrm{n}^{2}}\right)$
b. $\tan ^{-1}\left(\frac{4 \mathrm{~m}^{2} \mathrm{n}^{2}}{\mathrm{~m}^{4}-\mathrm{n}^{4}}\right)$
c. $\tan ^{-1}\left(\frac{4 \mathrm{~m}^{2} \mathrm{n}^{2}}{\mathrm{~m}^{4}+\mathrm{n}^{4}}\right)$
d. 45°
53. What is the equation of the straight line cutting off an intercept 2 from the negative direction of y-axis and inclined at 30° with the positive direction of x-axis?
a. $x-2 \sqrt{3} y-3 \sqrt{2}=0$
b. $x+2 \sqrt{3} y-3 \sqrt{2}=0$
c. $x+\sqrt{3} y-2 \sqrt{3}=0$

$$
\text { d. } x-\sqrt{3} y-2 \sqrt{3}=0
$$

54. What is the equation of the line passing through the point of intersection of the lines
$x+2 y-3=0$ and $2 x-y+5=0$ and parallel to the line $y-x+10=0$?
a. $7 x-7 y+18=0$
b. $5 x-7 y+18=0$
c. $5 x-5 y+18=0$
d. $x-y+5=0$
55. Consider the following statements:
56. The length p of the perpendicular from the origin to the line $\mathrm{ax}+\mathrm{by}=\mathrm{c}$ satisfies the relation $p^{2}=\frac{c^{2}}{a^{2}+b^{2}}$.
57. The length p of the perpendicular from the origin to the line $\frac{x}{a}+\frac{y}{b}=1$ satisfies the relation $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$.
58. The length of the perpendicular from the origin to the line $y=m x+c$ satisfies the relation $\frac{1}{\mathrm{p}^{2}}=\frac{1+\mathrm{m}^{2}+\mathrm{c}^{2}}{\mathrm{c}^{2}}$. Which of the above is/are correct?
a. 1, 2, and 3
b. 1 only
c. 1 and 2 only
d. 2 only
59. What is the equation of the ellipse whose vertices are $(\pm 5,0)$ and foci are at $(\pm 4,0)$?
a. $\frac{\mathrm{x}^{2}}{25}+\frac{\mathrm{y}^{2}}{9}=1$
b. $\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{9}=1$
c. $\frac{\mathrm{x}^{2}}{25}+\frac{\mathrm{y}^{2}}{16}=1$
d. $\frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{25}=1$
60. What is the equation of the straight line passing through the point $(2,3)$ and making an intercept on the positive y axis equal to twice its intercept on the positive x -axis?
a. $2 x+y=5$
b. $2 x+y=7$
c. $x+2 y=7$
d. $2 x-y=1$
61. Let the coordinates of the points A, B, C be $(1,8,4),(0,-11,4)$ and $(2,-3,1)$ respectively. What are the coordinates of the point D which is the foot of the perpendicular from A on BC ?
a. $(3,4 .-2)$
b. $(4,-2,5)$
c. $(4,5,-2)$
d. $(2,4,5)$
62. What is the equation of the plane passing through the points ($-2,6,-6$), $(-3,10,-9)$ and $(-5,0,-6)$?
a. $2 x-y-2 z=2$
b. $2 x+y+3 z=3$
c. $x+y+z=6$
d. $x-y-z=3$
63. A sphere of constant radius r through the origin intersects the coordinate axes in A, B, and C. What is the locus of the centroid of the triangle ABC ?
a. $x^{2}+y^{2}+z^{2}=r^{2}$
b. $x^{2}+y^{2}+z^{2}=4 r^{2}$
c. $9\left(x^{2}+y^{2}+z^{2}\right)=4 r^{2}$
d. $3\left(x^{2}+y^{2}+z^{2}\right)=2 r^{2}$
64. The coordinates of the vertices P, Q, and R of a triangle PQR are $(1,-1,1)$, $(3,-2,2)$ and $(0,2,6)$ respectively. If \angle $\mathrm{RQP}=\theta$, then what is $\angle \mathrm{PRQ}$ equal to?
a. $30^{\circ}+\theta$
b. $45^{\circ}-\theta$
c. $60^{\circ}-\theta$
d. $90^{\circ}-\theta$
65. The perpendiculars that fall from any point of the straight line $2 x+11 y=5$ upon the two straight lines $24 x+7 y=20$ and $4 x-3 y=2$ are
a. 12 and 4 respectively
b. 11 and 5 respectively
c. Equal to each other
d. Not equal to each other
66. The equation of the line, when the portion of it intercepted between the axes is divided by the point $(2,3)$ in the ratio of $3: 2$, is
a. Either $x+y=4$ or $9 x+y=$ 12
b. Either $x+y=5$ or $4 x+$
$9 y=30$
c. Either $x+y=4$ or $x+9 y=$ 30
d. Either $x+y=5$ or $9 x+$ $4 y=30$
67. What is the distance between the straight lines $3 x+4 y=9$ and $6 x+8 y=15 ?$
a. $3 / 2$
b. $3 / 10$
c. 6
d. 5
68. What is the equation to the sphere whose centre is at $(-2,3,4)$ and radius is 6 units?
a. $x^{2}+y^{2}+z^{2}+4 x-6 y-$ $8 z=7$
b. $x^{2}+y^{2}+z^{2}+6 x-4 y-$ $8 z=7$
c. $x^{2}+y^{2}+z^{2}+4 x-6 y-$ $8 z=4$
d. $x^{2}+y^{2}+z^{2}+4 x+6 y+$ $8 z=4$
69. If \vec{a} and \vec{b} are vectors such that
$|\vec{a}|=2,|\vec{b}|=7$ and
$\vec{a} \times \vec{b}=3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}$, then what is the acute angle between \vec{a} and \vec{b} ?
a. 30°
b. 45°
c. 60°
d. 90°
70. Let \vec{p} and \vec{q} be the position vectors of the points P and Q respectively with respect to origin O. The points R and S divide PQ internally and externally respectively in the ratio $2: 3$. If $\overrightarrow{\mathrm{OR}}$ and $\overrightarrow{\mathrm{OS}}$ are perpendicular, then which one of the following is correct?
a. $9 p^{2}=4 q^{2}$
b. $4 p^{2}=9 q^{2}$
c. $9 p=4 q$
d. $4 p=9 q$
71. What is the moment about the point $\hat{\imath}+2 \hat{\jmath}-\hat{k}$ of a force represented by $3 \hat{\imath}+\hat{k}$ acting through the point $2 \hat{\imath}-\hat{\jmath}+3 \hat{k}$?
a. $-3 \hat{\imath}+11 \hat{\jmath}+9 \hat{k}$
b. $3 \hat{\imath}+2 \hat{\jmath}+9 \hat{k}$
c. $3 \hat{\imath}+4 \hat{\jmath}+9 \hat{k}$
d. $\hat{\imath}+\hat{\jmath}+\hat{k}$
72. If $\vec{a}+2 \vec{b}+3 \vec{c}=0$ and $\vec{a} \times \vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\lambda(\vec{b} \times \vec{c})$ then what is the value of λ ?
a. 2
b. 3
c. 4
d. 6
73. If the vectors \vec{k} and \vec{A} are parallel to each other, then what is $\mathrm{k} \overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{A}}$ equal to?
a. $\mathrm{k}^{2} \overrightarrow{\mathrm{~A}}$
b. 0
c. $-k^{2} \overrightarrow{\mathrm{~A}}$
d. $\overrightarrow{\mathrm{A}}$
74. Which one of the following is correct in respect of the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}^{+}$ defined as $f(x)=|x+1|$?
a. $f(x)^{2}=[f(x)]^{2}$
b. $f|(x)|=|f(x)|$
c. $f(x+y)=f(x)+\mid f(y)$
d. None of the above
75. Suppose $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}^{+}$is defined by $f(x)=\frac{x^{2}}{1+x^{2}}$. What is the range of the function?
a. $[0,1)$
b. $[0,1]$
c. $(0,1]$
d. $(0,1)$
76. If $f(x)=|x|+|x+1|$, then which one of the following is correct?
a. $f(x)$ is continuous at $x=0$ and $x=1$
b. $f(x)$ is continuous at $x=0$ but not at $x=1$
c. $f(x)$ is continuous at $x=1$ but not at $x=0$
d. $f(x)$ is neither continuous at $x=0$ nor at $x=1$
77. Consider the function $\mathrm{f}(\mathrm{x})=$
$\left\{\begin{array}{cc}x^{2} \ell n|x| & x \neq 0 \\ 0 & x=0\end{array}\right.$ What is $f^{\prime}(0)$ equal to?
a. 0
b. -1
c. 1
d. It does not exist
78. What is the area of the region bounded by the parabola $y^{2}=6(x-1)$ and $y^{2}=3 x$?
a. $\frac{\sqrt{6}}{3}$
b. $\frac{2 \sqrt{6}}{3}$
c. $\frac{4 \sqrt{6}}{3}$
d. $\frac{5 \sqrt{6}}{3}$

Consider the following information for the next three (03) items that follow:
Three sides of a trapezium be the angle between a pair of adjacent sides.
76. If the area of the trapezium is maximum, what is the length of the fourth side?
a. $\frac{\pi}{6}$
b. $\frac{\pi}{4}$
c. $\frac{\pi}{3}$
d. $\frac{2 \pi}{5}$
77. If the area of the trapezium is maximum, what is the length of the fourth side?
a. 8 cm
b. 9 cm
c. 10 cm
d. 12 cm
78. What is the maximum area of the trapezium?
a. $36 \sqrt{3} \mathrm{~cm}^{2}$
b. $30 \sqrt{3} \mathrm{~cm}^{2}$
c. $27 \sqrt{3} \mathrm{~cm}^{2}$
d. $24 \sqrt{3} \mathrm{~cm}^{2}$
79. What is
$\int_{0}^{\pi} e^{x}$
equal to?
a. $\frac{e^{\pi}+1}{2}$
b. $\frac{e^{\pi}-1}{2}$
c. $e^{\pi}+1$
d. $\frac{e^{\pi}+1}{4}$
80. If $f(x)=\frac{x^{2}-9}{x^{2}-2 x-3}, x \neq 3$ is
continuous at $x=3$, then which one of the following is correct?
a. $f(3)=0$
b. $f(3)=1.5$
c. $f(3)=3$
d. $f(3)=-1.5$
81. What is $\int_{1}^{e} x \ln x d x$ equal to?
a. $\frac{e+1}{4}$
b. $\frac{e^{2}+1}{4}$
c. $\frac{e-1}{4}$
d. $\frac{e^{2}-1}{4}$
82. What is
$\int_{0}^{\sqrt{2}}\left[x^{2}\right]$
equal to (where [.] is the greatest integer function)?
a. $\sqrt{2}-1$
b. $1-\sqrt{2}$
c. $2(\sqrt{2}-1)$
d. $\sqrt{3}-1$
83. What is the maximum value of $16 \sin \theta-12 \sin ^{2} \theta ?$
a. $3 / 4$
b. $4 / 3$
c. $16 / 3$
d. 4
84. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ defined by
$f(x)=4 \sin x-3 \cos x+1$ is onto, then what is S equal to?
a. $[-5,5]$
b. $(-5,5)$
c. $(-4,6)$
d. $[-4,6]$
85. For f to be a function, what is the domain of f, if $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{|\mathrm{x}|-\mathrm{x}}}$?
a. $(-\infty, 0)$
b. $(0, \infty)$
c. $(-\infty, \infty)$
d. $(-\infty, 0]$
86. What is the solution of the differential equation $x d y-y d x=0$?
a. $x y=c$
b. $y=c x$
c. $x+y=c$
d. $x-y=c$
87. What is the derivative of the function
$f(x)=e^{\tan x}+\ell n(\sec x)-e^{\ell n x}$ at $\mathrm{x}=\frac{\pi}{4}$?
a. $\mathrm{e} / 2$
b. e
c. 2 e
d. 4 e
88. Which one of the following differential equations has a periodic solution?
a. $\frac{d^{2} \mathrm{x}}{\mathrm{dt}^{2}}+\mu \mathrm{x}=0$
b. $\frac{d^{2} x}{d t^{2}}-\mu x=0$
c. $x \frac{d x}{d t}+\mu t=0$
d. $\frac{\mathrm{dx}}{\mathrm{dt}}+\mu \mathrm{xt}=0$
89. What is the period of the function $f(x)=\sin x ?$
a. $\pi / 4$
b. $\pi / 2$
c. π
d. 2π
90. What is $\int \frac{d x}{2^{x}-1}$ equal to?
a. $\ln \left(2^{x}-1\right)+c$
b. $\frac{\ln \left(1-2^{-x}\right)}{\ell \ln 2}+\mathrm{c}$
c. $\frac{\ln \left(2^{-x}-1\right)}{2 \ln 2}+c$
d. $\frac{\ell n\left(1+2^{-x}\right)}{\ell n 2}+c$
91. The order and degree of the differential equation $y^{2}=4 a(x-a)$, where ' a ' is an arbitrary constant, are respectively
a. 1,2
b. 2,1
c. 2,2
d. 1,1
92. What is the value of $\int_{-\pi / 4}^{\pi / 4}(\sin x-\tan x) d x$
a. $-\frac{1}{\sqrt{2}}+\ln \left(\frac{1}{\sqrt{2}}\right)$
b. $\frac{1}{\sqrt{2}}$
c. 0
d. $\sqrt{2}$
93. If
$\int_{a}^{b} x^{3} d x=0$
and
$\int_{a}^{b} x^{2} d x=\frac{2}{3}$
then what are the values of a and b respectively?
a. $-1,1$
b. 1,1
c. 0,0
d. $2,-2$
94. What is

$$
\begin{aligned}
& \int_{0}^{1} x(1-x)^{9} d x \\
& \text { equal to? }
\end{aligned}
$$

a. $1 / 110$
b. $1 / 132$
c. $1 / 148$
a. 4,5
d. $1 / 240$
b. 2,3
c. 3,2
95. What is $\lim _{x \rightarrow 0} \frac{\tan x}{\sin 2 x}$ equal to?
d. 5,4
a. $1 / 2$
b. 1
c. 2
d. Limit does not exist
96. What is $\lim _{h \rightarrow 0} \frac{\sqrt{2 x+3 h}-\sqrt{2 x}}{2 h}$ equal to?
a. $\frac{1}{2 \sqrt{2 x}}$
b. $\frac{3}{\sqrt{2 \mathrm{x}}}$
c. $\frac{3}{2 \sqrt{2 \mathrm{x}}}$
d. $\frac{3}{4 \sqrt{2 x}}$
97.If $f(x)$ is an even function, where $f(x) \neq 0$, then which one of the following is correct?
a. $f^{\prime}(x)$ is even function
b. $f^{\prime}(x)$ is odd function
c. $f^{\prime}(\mathrm{x})$ may be an even or odd function depending on the type of function
d. $\mathrm{f}^{\prime}(\mathrm{x})$ is a constant function
98. If $y=e^{x^{2}} \sin 2 x$, then what is $\frac{d y}{d x}$ at $x=\pi$ equal to?
a. $(1+\pi) \mathrm{e}^{\mathrm{x}^{2}}$
b. $2 \pi \mathrm{e}^{\pi^{2}}$
c. $2 \mathrm{e}^{\pi^{2}}$
d. $\mathrm{e}^{\mathrm{x}^{2}}$
99. What is the solution of
$(1+2 x) d y(1-2 y) d x=0$?
a. $x-y-2 x y=c$
b. $y-x-2 x y=c$
c. $y+x-2 x y=c$
d. $x+y+2 x y=c$
100. What are the order and degree, respectively, of the differential equation $\left(\frac{d^{3} y}{d x^{3}}\right)^{2}=y^{4}+\left(\frac{d y}{d x}\right)^{5} ?$
101. In a Binomial Distribution, the mean is three times its variance. What is the probability of exactly 3 successes out of 5 trials?
a. $80 / 243$
b. $40 / 243$
c. $20 / 243$
d. $10 / 243$
102. Consider the following statements:

1. $P(\bar{A} \cup B)=P(\bar{A})+P(B)-P(\bar{A} \cap B)$
2. $P(A \cap \bar{B})=P(B)-P(A \cap B)$
3. $P(A \cap B)=P(B) P(A \mid B)$

Which of the above statements are correct?
a. 1 and 2 only
b. 1 and 3 only
c. 2 and 3 only
d. 1,2 , and 3
103. If the correlation coefficient between x and y is 0.6 , covariance is 27 and variance of y is 25 , then what is the variance of x ?
a. $9 / 5$
b. $81 / 25$
c. 9
d. 81
104. The probabilities that a student will solve Question A and Question B are 0.4 and 0.5 respectively. What is the probability that he solves at least one of the two questions?
a. 0.6
b. 0.7
c. 0.8
d. 0.9
105. Let \bar{x} be the mean of x_{1}, x_{2}, x_{3}, $\ldots ., x_{n}$. If $x_{i}=a+c y_{i}$, for some constants a and c , then what will be the mean of $y_{1}, y_{2}, y_{3}, \ldots ., y_{n}$?
a. $\mathrm{a}+\overline{\mathrm{cx}}$
b. $a-\frac{1}{e} \overline{\mathrm{x}}$
c. $\frac{1}{\mathrm{e}} \overline{\mathrm{x}}-\mathrm{a}$
d. $\frac{\bar{x}-a}{c}$
106. Consider the following
statements:

1. If the correlation coefficient $r_{x y}=0$, then the two lines of regression are parallel to each other.
2. If the correlation coefficient
$r_{x y}=+1$, then the two lines of regression are perpendicular to each other.
Which of the above statements is/are correct?
a. 1 only
b. 2 only
c. Both 1 and 2
d. Neither 1 nor 2
3. If $4 x-5 y+33=0$ and $20 x-$ $9 y=107$ are two lines of regression, then what are the values of \bar{x} and \bar{y} respectively?
a. 12 and 18
b. 18 and 12
c. 13 and 17
d. 17 and 13
4. Consider the following
statements:
5. Mean is independent of change in scale and changes in origin.
6. Variance is independent of change in scale but not in origin.

Which of the above statements is / are correct?
a. 1 only
b. 2 only
c. Both 1 and 2
d. Neither 1 nor 2
109. Consider the following
statements:

1. The sum of deviations from mean is always zero.
2. The sum of absolute deviations is minimum when taken around median.
Which of the above statements is/ are correct?
a. 1 only
b. 2 only
c. Both 1 and 2
d. Neither 1 and 2
3. What is the median of the numbers $4.6,0,9.3,-4.8,7.6,2.3,12.7$, $3.5,8.2,6.1,3.9,5.2$?
a. 3.8
b. 4.9
c. 5.7
d. 6.0
4. In a test in Mathematics, 20% of the students obtained "first class". If the data are represented by a Pie-Chart, what is the central angle corresponding to "first class"?
a. 20°
b. 36°
c. 72°
d. 144°
5. The mean and standard deviation of a set of values are 5 and 2 respectively. If 5 is added to each value, then what is the coefficient of variation for the new set of values?
a. 10
b. 20
c. 40
d. 70
6. A train covers the first 5 km of its journey at a speed of $30 \mathrm{~km} / \mathrm{hr}$ and the next 15 km at speed of $45 \mathrm{~km} / \mathrm{hr}$. What is the average speed of the train?
a. $35 \mathrm{~km} / \mathrm{hr}$
b. $37.5 \mathrm{~km} / \mathrm{hr}$
c. $39.5 \mathrm{~km} / \mathrm{hr}$
d. $40 \mathrm{~km} / \mathrm{hr}$
7. Two fair dice are rolled. What is the probability of getting a sum of 7 ?
a. $1 / 36$
b. $1 / 6$
c. $7 / 12$
d. $5 / 12$
8. If A and B are two events such that $2 \mathrm{P}(\mathrm{A})=3 \mathrm{P}(\mathrm{B})$, where $0<\mathrm{P}(\mathrm{A})<\mathrm{P}(\mathrm{B})<1$, then which one of the following is correct?
a. $\mathrm{P}(\mathrm{A} \mid \mathrm{B})<\mathrm{P}(\mathrm{B} \mid \mathrm{A})<$

$$
\begin{array}{ll}
\text { b. } & \mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
\text { }(\mathrm{A} \cap \mathrm{~B})<\mathrm{P}(\mathrm{~B} \mid \mathrm{A})< \\
\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \\
\text { c. } & \mathrm{P}(\mathrm{~B} \mid \mathrm{A})<\mathrm{P}(\mathrm{~A} \mid \mathrm{B})< \\
& \mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
\text { d. } \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})<\mathrm{P}(\mathrm{~A} \mid \mathrm{B})< \\
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})
\end{array}
$$

116. A box has ten chits numbered 0 ,
$1,2,3, \ldots ., 9$. First, one chit is drawn at random and kept aside. From the remaining, a second chit is drawn at random. What is the probability that the second chit drawn is " 9 "?
a. $1 / 10$
b. $1 / 9$
c. $1 / 90$
d. None of the above
117. One bag contains 3 white and 2 black balls, another bag contains 5 white and 3 black balls. If a bag is chosen at random and a ball is drawn from it, what is the chance that it is white?
a. $3 / 8$
b. $49 / 80$
c. $8 / 13$
d. $1 / 2$
118. Consider the following in respect of two events A and B :
119. $\mathrm{P}(\mathrm{A}$ occurs but not B$)=\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{B})$ if $\mathrm{B} \subset \mathrm{A}$
120. $\mathrm{P}(\mathrm{A}$ alone or B alone occurs $)=\mathrm{P}(\mathrm{A})+$ $P(B)-P(A \cap B)$
121. $P(A \cup B)=P(A)+P(B)$ if A and B are mutually exclusive Which of the above is/ are correct?
a. 1 only
b. 1 and 3 only
c. 2 and 3 only
d. 1 and 2 only
122. A committee of three has to be chosen from a group of 4 men and 5 women. If the selection is made at random, what is the probability that exactly two members are men?
a. $5 / 14$
b. $1 / 21$
c. $3 / 14$
d. $8 / 21$
123. The standard deviation σ of the first N natural numbers can be obtained using which one of the following formulae?
a. $\sigma=\frac{\mathrm{N}^{2}-1}{12}$
b. $\sigma=\sqrt{\frac{\mathrm{N}^{2}-1}{12}}$
c. $\sigma=\sqrt{\frac{\mathrm{N}-1}{12}}$
d. $\sigma=\sqrt{\frac{\mathrm{N}^{2}-1}{6 \mathrm{~N}}}$
124. (b)

Putting $n=1,121^{n}-25^{n}+1900^{n}-$ $(-4)^{n}=121-25+1900+4=2000$ Which is divisible by 2000 .
2. (b)

$$
\begin{aligned}
& \frac{1}{\log _{2}^{n}}+\frac{1}{\log _{3}^{\mathrm{n}}}+\frac{1}{\log _{4}^{\mathrm{n}}}+\ldots .+\frac{1}{\log _{2017}^{n}} \\
& =\log _{n}^{2}+\log _{\mathrm{n}}^{3}+\log _{n}^{4}+\ldots .+\log _{\mathrm{n}}^{2017} \\
& =\log _{\mathrm{n}}^{2017!}=\log _{2017!}^{2017}=1
\end{aligned}
$$

3. (b)

$$
\begin{gathered}
{ }^{43} \mathrm{C}_{2 \mathrm{r}+1}={ }^{43} \mathrm{C}_{43-\mathrm{r}-2} \Rightarrow 3 \mathrm{r}+1=41 \\
\\
\Rightarrow \mathrm{r}=14
\end{gathered}
$$

4. (c)
$\operatorname{Arg}(-1-i)=\pi+\frac{\pi}{4}=-\frac{3 \pi}{4}$
5. (c)

Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$(x+i y)^{2}+\alpha(x+i y)+\beta=0$
$\Rightarrow x^{2}-y^{2}+2 \mathrm{ixy}+\alpha \mathrm{x}+\mathrm{i} \alpha \mathrm{y}+\beta=0$
Equating real and imaginary parts
separately, we get
$x^{2}-y^{2}+\alpha x+\beta=0,(2 x+\alpha) y=0$
Now, $2 \mathrm{x}+\alpha=0 \quad(\because \mathrm{y}=0)$
$\Rightarrow \alpha=-2 \quad(\because \mathrm{x}=\operatorname{Re} \mathrm{z}=1)$
Now, $1-y^{2}-2+\beta=0$
$\Rightarrow \beta=1+y^{2}>1(\because y \in R, y \neq 0)$
$\Rightarrow \beta \in(1, \infty)$
6. (c)
$C=\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right) \cup\left(\mathrm{A}^{\prime} \cap \mathrm{B}\right)$
$=(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$
7. (d)

No. of ways $=5 \times 4 \times 3=60$
8. (a)
$|1-2 i|^{x}=5^{x}$
$\Rightarrow 5^{\mathrm{x} / 2}=5^{\mathrm{x}}$
$\Rightarrow \mathrm{x}=0$
There is no non-zero integral solution.
9. (c)

$$
\begin{aligned}
& \frac{(a+b) / 2}{\sqrt{a b}}=\frac{5}{3} \Rightarrow \frac{a^{2}+b^{2}+2 b}{a b}=\frac{100}{9} \\
& \Rightarrow 9 t^{2}-82 t+9=0 \quad[\text { where } t=a / b] \\
& \Rightarrow t=9,1 / 9 \\
& \Rightarrow a: b=9: 10 R a: b=1: 9
\end{aligned}
$$

10. (b)

$$
\begin{aligned}
& \alpha={ }_{\mathrm{n}}^{\mathrm{m}+\mathrm{n}} \mathrm{C}, \beta={ }_{\mathrm{m}}^{\mathrm{m}+\mathrm{n}} \mathrm{C} \\
& \therefore \alpha=\beta
\end{aligned}
$$

11. (c)
$\mathrm{x}+\log _{15}\left(1+3^{\mathrm{x}}\right)=\mathrm{x} \log _{15} 5+\log _{15} 12$
$\Rightarrow \log _{15} 15^{\mathrm{x}}+\log _{15}\left(1+3^{\mathrm{x}}\right)=\log _{15} 5^{\mathrm{x}}+\log _{15} 12$
$\Rightarrow \log _{15} 15^{x}\left(1+3^{x}\right)=\log _{15}\left(5^{x} \times 12\right)$
$\Rightarrow 15^{x}\left(1+3^{x}\right)=5^{x} \times 12$
$\Rightarrow 3^{x}+3^{2 x}=12 \Rightarrow x=1$
12. (a)

The last digit is fixed as ' 0 '.
\therefore No. of ways $=4 \times 3 \times 2=24$
13. (c)

Required No.
$=(54+63)+(18-10)=125$
14. (d)

Required No. $=18-10=8$
15. (c)

$$
\left|\frac{\alpha-\beta}{\alpha \cdot \bar{\alpha}-\alpha \bar{\beta}}\right|=\frac{|\alpha-\beta|}{|\alpha||\bar{\alpha}-\bar{\beta}|}=\frac{|\alpha-\beta|}{|\alpha-\beta|}=1
$$

16. (a)
$|1-x|+x^{2}=5$
$\Rightarrow 1-x+x^{2}=5, x<1$
Or $-1+x+x^{2}=5, x \geq 1$
$\Rightarrow x^{2}-x-4=0, x<1$ or
$x^{2}+x-6=0, x \geq 1$
$\Rightarrow \mathrm{x}=\frac{-1-\sqrt{17}}{2}$ or $\mathrm{x}=2$
Equation has a rational root and an irrational root.
17. (d)
$31=16+8+4+2+1$
\therefore Binary expression of decimal number $31=11111$
18. (a)
$\mathrm{i}^{1000}+\mathrm{i}^{1001}+\mathrm{i}^{1002}+\mathrm{i}^{1003}=1+\mathrm{i}+\mathrm{i}^{2}+\mathrm{i}^{3}$
$\Rightarrow 1+\mathrm{i}-1-\mathrm{i}=0$
19. (a)
$\frac{1}{\log _{2} \mathrm{~N}}+\frac{1}{\log _{3} \mathrm{~N}}+\frac{1}{\log _{4} \mathrm{~N}}+\ldots .+\frac{1}{\log _{100} \mathrm{~N}}$
$=\log _{N}^{2}+\log _{N}^{3}+\ldots .+\log _{N}^{100}=\log _{N}^{100!}=\frac{1}{\log _{100!}^{N}}$
20. (b)
$\mathrm{z}=\sqrt{3}+\mathrm{i}$
$r=\sqrt{3+1}=2$
argument $=\frac{\pi}{6}$
So, $z=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
21. (c)

Let $\mathrm{y}=2 \sqrt{3} \mathrm{x}$
Now, $(1+y)^{11}+(1-y)^{11}$ has no. of terms
$=\frac{11+1}{2}=6$
22. (d)
$5^{5}+7^{5}$ is divisible by $5+7=12$
23. (a)

Using formula for sum of infinite terms of GP

$$
x=\frac{1}{1-(-y)}=\frac{1}{1+y}
$$

24. (a)

In this case,

$$
\begin{aligned}
& A^{-1}=\operatorname{adj} A=(\operatorname{co}-\text { factor } A)^{T} \\
& =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

25. (a)

$$
(\mathrm{A})_{(2 \times 3)} \times(\mathrm{B})_{(3 \times 5)}=(\mathrm{AB})_{(2 \times 5)}
$$

\therefore B must be 3×5 matrix
26. (a)
$A^{2}-I_{2}=k A$
$\Longrightarrow\left[\begin{array}{cc}5 & 8 \\ 8 & 13\end{array}\right]-\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\mathrm{k} & 2 \mathrm{k} \\ 2 \mathrm{k} & 3 \mathrm{k}\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}4 & 8 \\ 8 & 12\end{array}\right]-\left[\begin{array}{cc}\mathrm{k} & 2 \mathrm{k} \\ 2 \mathrm{k} & 3 \mathrm{k}\end{array}\right] \Rightarrow \mathrm{k}=4$
27. (a)

No. of triangle
$={ }^{12} \mathrm{C}_{3}-{ }^{7} \mathrm{C}_{3}=220-35=185$
28. (d)
${ }_{\mathrm{r}}^{\mathrm{n}} \mathrm{C}+{ }_{\mathrm{r}-1}^{\mathrm{n}} \mathrm{C}+{ }_{r-1}^{\mathrm{n}} \mathrm{C}+{ }_{\mathrm{r}-2}^{\mathrm{n}} \mathrm{C}$
$={ }^{\mathrm{n}+1} \mathrm{C}+{ }_{\mathrm{r}-1}^{\mathrm{n}+1} \mathrm{C}={ }_{\mathrm{r}}^{\mathrm{n}+2} \mathrm{C}$
29. (a)

No. of solution $=$ one

30. (b)

Required No.
$=680+215-850=45$
31. (c)

Sum $=11+14+\ldots \ldots+98$
$=\left(\frac{11+98}{2}\right) \times 30=109 \times 15=1635$
32. (b)

Negative power of 10 will always be between $0 \& 1$.
33. (c)

Product $=\frac{3}{\mathrm{r}^{2}} \times \frac{3}{\mathrm{r}} \times 3 \times 3 \mathrm{r} \times 3 \mathrm{r}^{2}=243$
34. (a)

$$
\begin{aligned}
x+z & =3, x z=9 \\
\frac{2 x z}{x+z} & =\frac{18}{3}=6 \Rightarrow x, 6, z \in H . P
\end{aligned}
$$

35. (c)

Sum $=\mathrm{i}^{2}+2 \mathrm{i}^{3}+2 \mathrm{i}^{4}+\ldots . .+2 \mathrm{i}^{10}+2 \mathrm{i}^{11}+\mathrm{i}^{12}$ $=2 \mathrm{i}^{11}=2 \mathrm{i}^{3}=-2 \mathrm{i}$
36. (c)
$\sin \mathrm{x}=\frac{1}{\sqrt{5}}, \sin \mathrm{y}=\frac{1}{\sqrt{10}}$
$\sin (x+y)=\sin x \cdot \cos y+\cos x \sin y$
$\cos x=\sqrt{1-\frac{1}{5}}=\frac{2}{\sqrt{5}}$,
$\cos y=\sqrt{1-\frac{1}{10}}=\sqrt{\frac{9}{10}}=\frac{3}{\sqrt{10}}$
$\sin (x+y)=\frac{1}{\sqrt{5}} \times \frac{3}{\sqrt{10}}+\frac{2}{\sqrt{5}} \times \frac{1}{\sqrt{10}}=\frac{5}{\sqrt{50}}=\frac{1}{\sqrt{2}}$

$$
\Rightarrow x+y=45^{\circ}
$$

37. (c)
$\frac{\sin 5 x-\sin 3 x}{\cos 5 x+\cos 3 x}=\frac{2 \cos 4 x \cdot \sin x}{2 \cos 4 x \cdot \cos x}=\tan x$
38. (c)
$\sin \left(90^{\circ}+15^{\circ}\right)+\cos 105^{\circ}=\cos 15^{\circ}+\cos 105^{\circ}$ $=2 \cos 60^{\circ} . \cos 45^{\circ}=2 \times \frac{1}{2} \times \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}$
39. (b)

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B} \\
& \frac{2}{2 / 3}=\frac{3}{\sin B} \\
& \sin B=1, B=\frac{\pi}{2}
\end{aligned}
$$

40. (c)

$$
\begin{aligned}
\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)= & \sin ^{-1} \sin \left(\pi-\frac{\pi}{3}\right)=\sin ^{-1} \sin \frac{\pi}{3} \\
& =\frac{\pi}{3}
\end{aligned}
$$

41. (b)

Sum of angles of a triangle $=\pi$

$$
\Rightarrow x-y+x+x+y=\pi \Rightarrow x=\pi / 3
$$

42. (a)
$\cos \beta=\cos 2 \alpha=\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}$
43. (a)
$\tan \theta=\frac{6}{2 \sqrt{3}}=\sqrt{3} \Rightarrow \theta=60^{\circ}$
44. (b)
$\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{3}{5}}{1-\left(\frac{1}{4}\right) \times\left(\frac{3}{5}\right)}\right)=\tan ^{-1}(1)=\frac{\pi}{4}$
45. (a)

Let H be the height and R be the distance of centre of balloon from the observer.
$\mathrm{R}=\frac{\mathrm{r}}{\sin \alpha / 2}$
$H=R \sin \beta=\frac{r \sin \beta}{\sin \alpha / 2}$
46. (a)

$$
\begin{aligned}
& \frac{\sin (x+y)+\sin (x-y)}{\sin (x+y)-\sin (x-y)}=\frac{a}{b} \\
& \Rightarrow \frac{2 \sin x \cos y}{2 \sin y \cos x}=\frac{a}{b} \Rightarrow \frac{\tan x}{\tan y}=\frac{a}{b}
\end{aligned}
$$

47. (b)
$(\sin \alpha+\sin \beta)^{2}+(\cos \alpha+\cos \beta)^{2}=0$
$\Rightarrow 2+2 \cos (\alpha-\beta)=0$
$\Rightarrow \cos (\alpha-\beta)=-1=\cos \pi$
$\Rightarrow \alpha=\pi+\beta$
48. (c)

A must be odd multiple of 180°
49. (b)
$\cos \alpha+\cos \beta+\cos \gamma=0,0<\alpha \leq \frac{\pi}{2}$,
$0<\beta \leq \frac{\pi}{2}, 0<\gamma<\frac{\pi}{2}$
$\Rightarrow \alpha=\beta=\gamma=\frac{\pi}{2}$
$\Rightarrow \sin \alpha+\sin \beta+\sin \gamma=3$
50. (a)

$$
\begin{aligned}
& f(x)=\sin \left(x+\frac{\pi}{5}\right)+\cos \left(x+\frac{\pi}{5}\right) \\
& =\sqrt{2} \sin \left(x+\frac{\pi}{5}+\frac{\pi}{4}\right)
\end{aligned}
$$

$f(x)$ is maximum when $x+\frac{\pi}{5}+\frac{\pi}{4}=\frac{\pi}{2}$
$\Rightarrow x=\frac{\pi}{20}$
51. (a)

$$
\left(\frac{22}{5}, \frac{23}{5}\right)
$$

$(4,3)$
$(5,7)$

$$
\therefore P Q=\sqrt{\left(2-\frac{22}{5}\right)^{2}+\left(-5-\frac{23}{5}\right)^{2}}=\frac{12}{5} \sqrt{17}
$$

52. (b)

Slope $S_{1}=\frac{m n+n^{2}}{m^{2}-m n}$, Slope $S_{2}=\frac{m n-n^{2}}{m n+m^{2}}$
Angle $=\tan ^{-1}\left(\frac{\frac{m n+n^{2}}{m^{2}-m n}-\frac{m n-n^{2}}{m n+m^{2}}}{1+\frac{m n+n^{2}}{m^{2}+m n} \times \frac{m n-n^{2}}{m n+m^{2}}}\right)$
After solving
Angle $=\tan ^{-1}\left(\frac{4 m^{2} n^{2}}{m^{4}-n^{4}}\right)$
53. (d)

Equation of line is

$$
\begin{aligned}
& y=\frac{1}{\sqrt{3}} x-2 \\
& \Rightarrow \sqrt{3 y}=x-2 \sqrt{3} \\
& \Rightarrow x-\sqrt{3 y}-2 \sqrt{3}=0
\end{aligned}
$$

54. (c)

Equation of line is
$\mathrm{x}+2 \mathrm{y}-3+\lambda(2 \mathrm{x}-\mathrm{y}+5)=0$
$\Rightarrow(1+2 \lambda) x+(2-\lambda) y+5 \lambda-3=0$

Now, $\frac{1+2 \lambda}{\lambda-2}=1 \Rightarrow \lambda=-3$
\therefore Equation is $-5 x+5 y-18=0$
$\Rightarrow 5 \mathrm{x}-5 \mathrm{y}+18=0$
55. (c)

Statement 1

$P=\frac{|-c|}{\sqrt{a^{2}+b^{2}}} \Rightarrow P^{2}=\frac{c^{2}}{a^{2}+b^{2}}$
It is true.
Statement 2

$\frac{1}{\mathrm{P}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$
It is true.
Statement 3

$\Rightarrow \mathrm{P}^{2}=\frac{\mathrm{c}^{2}}{\mathrm{~m}^{2}+1} \Rightarrow \frac{1}{\mathrm{P}^{2}}=\frac{\mathrm{m}^{2}+1}{\mathrm{c}^{2}}$
It is false.
56. (a)
$\mathrm{c}=4, \mathrm{a}=5$
$b^{2}=25-16=9$
\therefore Equation of ellipse is
$\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
57. (b)

Equation of line is $\frac{x}{a}+\frac{y}{2 a}=1$
$\Rightarrow 2 \mathrm{x}+\mathrm{y}=2 \mathrm{a}$
Putting (2,3), we get $2 \mathrm{a}=7$
\therefore Equation of line is $2 \mathrm{x}+\mathrm{y}=7$
58. (c)

Equation of BC is

$$
\begin{aligned}
& \frac{x-0}{2}=\frac{y+11}{8}=\frac{z-4}{-3}=\lambda \text { (say) } \\
& \Rightarrow x=2 \lambda, y=8 \lambda-11, z=-3 \lambda+4
\end{aligned}
$$

Now, $2(\mathrm{x}-1)+8(\mathrm{y}-8)-3(\mathrm{z}-4)=0$

$$
\Rightarrow 2 x+8 y-3 z=54
$$

$\Rightarrow 4 \lambda+64 \lambda-88+9 \lambda-12=54$
$\Rightarrow \lambda=2$
\therefore foot $=(4,5,-2)$
59. (a)

Equation of plane is

$$
\left|\begin{array}{ccc}
x+2 & y-6 & z+6 \\
-1 & 4 & -3 \\
-3 & -6 & 0
\end{array}\right|=0
$$

$\Rightarrow(\mathrm{z}+6)(18)+3[-6(\mathrm{x}+2)+3(\mathrm{y}-6)]=0$
$\Rightarrow 18 \mathrm{z}+108+3(-6 \mathrm{x}-12+3 \mathrm{y}-18)=0$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}-2 \mathrm{z}=2$
60. (c)

Let A (a, 0, 0), B ($0, \mathrm{~b}, 0$), C ($0,0, \mathrm{c}$)
Equation sphere is
$x^{2}+y^{2}+z^{2}-a x-b y-c z=0$
$r=\frac{1}{2} \sqrt{a^{2}+b^{2}+c^{2}} \Rightarrow a^{2}+b^{2}+c^{2}=4 r^{2}$
Let, (α, β, γ) be the centroid of triangle.
$\Rightarrow \alpha=\frac{a}{3}, \beta=\frac{b}{3}, \gamma=\frac{c}{3}$
Now, $\alpha^{2}+\beta^{2}+\gamma^{2}=\frac{a^{2}}{9}+\frac{b^{2}}{9}+\frac{c^{2}}{9}=\frac{4 r^{2}}{9}$
$\Rightarrow 9\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)=4 r^{2}$
\Rightarrow Locus is given by, $9\left(x^{2}+y^{2}+z^{2}\right)=4 r^{2}$
61. (d)
$\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{PR}}=0$

(3, -2, 2)
$(0,2,6)$
$\Rightarrow \angle \mathrm{QPR}=90^{\circ}$
We have, $\angle \mathrm{RQP}=\theta$
$\Rightarrow \angle \mathrm{PRQ}=90^{\circ}-\theta$
62. (c)

Let, $\left(\frac{5}{2}, 0\right)$ be a point on $2 x+11 y=5$.
Now, perpendicular from $\left(\frac{5}{2}, 0\right)$ to
$24 x+7 y=20$ is $\frac{8}{5}$
Perpendicular from $\left(\frac{5}{2}, 0\right)$ to

$$
4 x-3 y=2 \text { is } \frac{8}{5}
$$

63. (d)

Now $\frac{2 \mathrm{a}}{5}=2 \Rightarrow \mathrm{a}=5$
$\frac{3 b}{5}=3 \Rightarrow \mathrm{~b}=5$
Equation of line is $x+y=5$.

$$
\frac{3 a}{5}=2 \Rightarrow a=\frac{10}{3}
$$

$\frac{2 \mathrm{~b}}{5}=3 \Rightarrow \mathrm{~b}=\frac{15}{2}$
Equation of line is

$$
\begin{aligned}
& \frac{3 x}{10}+\frac{2 y}{15}=1 \\
& \Rightarrow 9 x+4 y=30
\end{aligned}
$$

64. (b)

$$
\text { Distance }=\frac{\left|9-\frac{15}{2}\right|}{5}=\frac{3}{10}
$$

65. (a)

$$
\begin{aligned}
& (\mathrm{x}+2)^{2}+(\mathrm{y}-3)^{2}+(\mathrm{z}-4)^{2}=6^{2} \\
& \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+4 \mathrm{x}-6 \mathrm{y}-8 \mathrm{z} \\
& \quad=6^{2}-2^{2}-3^{2}-4^{2} \\
& \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+4 \mathrm{x}-6 \mathrm{y}-8 \mathrm{z}=7
\end{aligned}
$$

66. (a)

$$
\begin{aligned}
& \sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}=\frac{7}{2 \times 7}=\frac{1}{2} \\
& \Rightarrow \theta=30^{\circ}
\end{aligned}
$$

67. (a)

$\overrightarrow{\mathrm{OR}}=\frac{3 \overrightarrow{\mathrm{p}}+2 \overrightarrow{\mathrm{q}}}{5}$,

$\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OS}}=0$

$$
\begin{aligned}
& \Rightarrow \frac{1}{5}(3 \vec{p}+2 \vec{q}) \cdot(3 \vec{p}-2 \vec{q})=0 \\
& \Rightarrow 9|\vec{p}|^{2}-4|\vec{q}|^{2}=0 \Rightarrow 9 p^{2}=4 q^{2}
\end{aligned}
$$

68. (a)

$$
\begin{aligned}
\vec{r} & =(2 \hat{\imath}-\hat{\jmath}+3 \hat{k})-(\hat{\imath}+2 \hat{\jmath}-\hat{k}) \\
& =\hat{\imath}-3 \hat{\jmath}+4 \hat{k} \\
\vec{\pi}= & \vec{r} \times \vec{F}=(\hat{\imath}-3 \hat{\jmath}+4 \hat{k}) \times(3 \hat{\imath}+\hat{k}) \\
& =-3 \hat{\imath}+11 \hat{\jmath}+9 \hat{k}
\end{aligned}
$$

69. (d)
$(\vec{a}+2 \vec{b})=-3 \vec{c} \Rightarrow \vec{a} \times \vec{b}+2 \vec{b} \times \vec{b}=-3 \vec{c} \times \vec{b}$
$\Rightarrow \vec{a} \times \vec{b}=3(\vec{b} \times \vec{c})$
$3 \vec{c}+\vec{a}=-2 \vec{b} \Rightarrow 3(\vec{c} \times \vec{a})+(\vec{a} \times \vec{a})$

$$
=-2 \vec{b} \times \vec{a}
$$

$\Rightarrow 3(\vec{c} \times \vec{a})=2(\vec{a} \times \vec{b})=6(\vec{b} \times \vec{c})$
$\Rightarrow \vec{c} \times \vec{a}=2(\vec{b} \times \vec{c})$
Now,
$\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=6(\vec{b} \times \vec{c}) \Rightarrow \lambda=6$
70. (b)

Cross product of parallel vectors $=\overrightarrow{0}$
71. (d)
$f(x)=|x+1|$
going through options
(a) $f\left(x^{2}\right)=\left|x^{2}+1\right|$
$\{\mathrm{f}(\mathrm{x})\}^{2}=(\mathrm{x}+1)^{2}$
Which implies $\mathrm{f}\left(\mathrm{x}^{2}\right) \neq\{\mathrm{f}(\mathrm{x})\}^{2}$
(b) $f(|x|)=||x|+1|$
$|f(x)|=||x+1||=|x+1|$
Which implies $\mathrm{f}(|\mathrm{x}|) \neq|\mathrm{f}(\mathrm{x})|$
(c) $f(x+y)=|x+y+1|$
$f(x)+f(y)=|x+1|+|y+1|$
Which implies
$\mathrm{f}(\mathrm{x}+\mathrm{y}) \neq \mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$
Option d is correct.
72. (a)
$y=f(x)=\frac{x^{2}}{1+x^{2}}$
Clearly $y \geq 0$, Again $x^{2}<1+x^{2}$
So, Range is $[0,1$)
73. (a)

Clearly $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$ and 1 .
74. (a)
$f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{h^{2} \log h}{h}=0
$$

75. (c)

Solving $y^{2}=6(x-1)$ and $y^{2}=3 x$
We get $6 x-6=3 x \Rightarrow x=2$

$$
\begin{aligned}
& \Rightarrow y= \pm \sqrt{6} \\
& \text { Area }=\int_{-\sqrt{6}}^{\sqrt{6}}\left(1+\frac{y^{2}}{6}-\frac{y^{2}}{3}\right) d y \\
& =2 \int_{0}^{\sqrt{6}}\left(y-\frac{y^{2}}{6}\right) d y \\
& =2\left[y-\frac{y^{3}}{18}\right]_{0}^{\sqrt{6}}=2 \times \frac{2 \sqrt{6}}{3}=\frac{4 \sqrt{6}}{3}
\end{aligned}
$$

76. (c)

$$
\begin{aligned}
& A=\text { Area }=\frac{1}{2}(6+6+2 x) \sqrt{36-x^{2}} \\
& =(6+x) \sqrt{36-x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d A}{d x}=(6+x)\left(\frac{-2 x}{2 \sqrt{36-x^{2}}}\right)+\sqrt{36-x^{2}} \\
& =\sqrt{36-x^{2}}-\frac{x(6+x)}{\sqrt{36-x^{2}}}=\frac{36-6 x-2 x^{2}}{\sqrt{36-x^{2}}}
\end{aligned}
$$

$$
\frac{\mathrm{dA}}{\mathrm{dx}}=0 \Rightarrow 36-6 \mathrm{x}-2 \mathrm{x}^{2}=0 \Rightarrow \mathrm{x}=3
$$

$\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}}<0$
Now, $\cos \alpha=\frac{x}{6}=\frac{3}{6}=\frac{1}{2} \Rightarrow \alpha=3$
77. (d)

Fourth side $=6+6=12$
78. (c)

Maximum area $=9 \times 3 \sqrt{3}=27 \sqrt{3}$
79. (a)
$I=\int_{0}^{\pi} e^{x} \sin x d x$
$=\left[\sin \mathrm{x} \cdot \mathrm{e}^{\mathrm{x}}\right]_{0}^{\pi}-\int_{0}^{\pi}-\sin \mathrm{x} \cdot \mathrm{e}^{\mathrm{x}} \mathrm{dx}$
$=0-\left\{\left[\cos x \cdot e^{x}\right]_{0}^{\pi}-\int_{0}^{\pi}-\sin x \cdot e^{x} d x\right\}$
$=-\left[-\mathrm{e}^{\pi}-1\right]-\mathrm{I}$
$\Rightarrow 2 \mathrm{I}=\mathrm{e}^{\pi}+1 \Rightarrow \mathrm{I}=\frac{\mathrm{e}^{\pi}+1}{2}$
80. (b)

$$
\begin{aligned}
& f(3)=\lim _{x \rightarrow 3} \frac{2 \mathrm{x}}{2 \mathrm{x}-2} \\
& =\frac{6}{4}=1.5
\end{aligned}
$$

81. (b)
$\int_{1}^{e} x \log x d x=\left[\log x \cdot \frac{x^{2}}{2}\right]_{1}^{e}-\int_{1}^{e} \frac{1}{x} \cdot \frac{x^{2}}{2} d x$
$=\frac{e^{2}}{2}-\frac{1}{2} \times \frac{1}{2}\left[x^{2}\right]_{1}^{e}=\frac{e^{2}}{2}-\frac{e^{2}-1}{4}=\frac{e^{2}+1}{4}$
82. (a)
$\int_{0}^{\sqrt{2}}\left[x^{2}\right] d x=\int_{0}^{1} 0 d x+\int_{1}^{\sqrt{2}} 1 d x=\sqrt{2}-1$
83. (c)

Let, $\sin \theta=\mathrm{x}$, clearly $\mathrm{x} \in[-1,1]$
84. (d)
$\because f(x)=4 \sec x-3 \cos x+1$
Minimum $\mathrm{f}=\sqrt{4^{2}+(-3)^{2}}+1=-4$
Maximum $f=\sqrt{4^{2}+(-3)^{2}}+1=6$
$S=$ Range of f
$=[$ Minimum f , maximum f$]=[-4,6]$
85. (a)
$\mathrm{f}(\mathrm{x})$ is defined if
$|x|-x>0 \Rightarrow|x|>x$
For $\mathrm{x}>0, \mathrm{x}>\mathrm{x}$, (not possible)
For $\mathrm{x}<0,-\mathrm{x}>\mathrm{x} \Rightarrow 2 \mathrm{x}<0 \Rightarrow \mathrm{x}<0$
(possible)
So, domain of $f=(-\infty, 0)$
86. (b)
$x d y-y d x=0$
$\Rightarrow \frac{x d y-y d x}{x^{2}}=0 \Rightarrow d\left(\frac{y}{x}\right)=0$
Integrating, we get $\frac{\mathrm{y}}{\mathrm{x}}=\mathrm{c} \Rightarrow \mathrm{y}=\mathrm{cx}$
87. (c)

$$
\begin{aligned}
& f(x)=e^{\tan x}+\ln (\sec x)-x \\
& f^{\prime}(x)=e^{\tan x} \cdot \sec ^{2} x+\frac{\sec x \tan x}{\sec x}-1 \\
& f^{\prime}(\pi / 4)=2 e+1-1=2 e
\end{aligned}
$$

88. (a)

It is obvious.
89. (d)

Period of $f(x)=\sin x$ is 2π
90. (b)

$$
\begin{aligned}
& \int \frac{\mathrm{dx}}{2^{x}-1}=\frac{1}{\log 2} \int \frac{2^{-x} \log 2}{1-2^{-x}} \mathrm{dx} \\
& =\frac{1}{\log 2} \log \left(1-2^{-x}\right)+c
\end{aligned}
$$

91. (a)

$$
\begin{equation*}
y^{2}=4 a(x-a) \tag{1}
\end{equation*}
$$

Order $=1$.
Differentiating, both sides, we get
$2 y \frac{d y}{d x}=4 a \Rightarrow\left(\frac{y}{2}\right) \frac{d y}{d x}=a$
Putting in (1), we get

$$
\begin{aligned}
& y^{2}=4\left(\frac{y}{2}\right)\left(\frac{d y}{d x}\right)\left(x-\frac{y}{2} \frac{d y}{d x}\right) \\
& \Rightarrow y^{2}=2 y \frac{d y}{d x}\left(x-\frac{y}{2} \frac{d y}{d x}\right) \\
& \Rightarrow y^{2}=2 x y \frac{d y}{d x}-y^{2}\left(\frac{d y}{d x}\right)^{2}
\end{aligned}
$$

Degree 2.
92. (c)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\sin \mathrm{x}-\tan \mathrm{x} \\
& \Rightarrow \mathrm{f}(-\mathrm{x})=-\sin \mathrm{x}+\tan \mathrm{x}=-\mathrm{f}(\mathrm{x}) \\
& \Rightarrow \mathrm{f}(\mathrm{x}) \text { is odd function. } \\
& \Rightarrow \int_{\frac{\pi}{4}}^{\pi / 4}(\sin \mathrm{x}-\tan \mathrm{x}) \mathrm{dx}=0
\end{aligned}
$$

93. (a)

$$
\int_{a}^{b} x^{3} d x=0 \Rightarrow a=-b
$$

($\because \mathrm{x}^{3}$ is an odd function)
Now,

$$
\begin{aligned}
& \int_{-b}^{b} \mathrm{x}^{2} \mathrm{dx}=\frac{2}{3} \Rightarrow 2 \int_{0}^{b} \mathrm{x}^{2} \mathrm{dx}=\frac{2}{3} \\
& \Rightarrow\left[\frac{\mathrm{x}^{3}}{3}\right]_{0}^{\mathrm{b}}=\frac{1}{3} \Rightarrow \mathrm{~b}^{3}=1 \Rightarrow \mathrm{~b}=1
\end{aligned}
$$

94. (a)

$$
\begin{aligned}
& \int_{0}^{1} x(1-x)^{9} d x=\int_{0}^{1}(1-x) x^{9} d x \\
& =\int_{0}^{1}\left(x^{9}-x^{10}\right) d x=\left[\frac{x^{10}}{10}-\frac{x^{11}}{11}\right]_{0}^{1} \\
& =\frac{1}{10}-\frac{1}{11}=\frac{1}{100}
\end{aligned}
$$

95. (a)

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{\tan x}{\sin 2 x}=\frac{1}{2}
$$

96. (d)
$\operatorname{Lt}_{x \rightarrow 0} \frac{\frac{1}{2 \sqrt{2 x+3 h}} \times 3}{2}=\frac{3}{4 \sqrt{2 x}}$
97. (b)
$f(x)$ is even function $\Rightarrow f^{\prime}(x)$ is odd function.
98. (c)

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{e}^{\mathrm{x}^{2}} \cos 2 \mathrm{x}+2 \mathrm{xe}^{\mathrm{x}^{2}} \sin 2 \mathrm{x} \\
& =2 \mathrm{e}^{\mathrm{x}^{2}}(\cos 2 \mathrm{x}+\mathrm{x} \sin 2 \mathrm{x}) \\
& =2 \mathrm{e}^{\pi^{2}}\{\cos \pi+\pi \sin 2 \pi\}=2 \mathrm{e}^{\pi^{2}}
\end{aligned}
$$

99. (a)
$(1+2 x) d y=(1-2 y) d x$
$\Rightarrow \int \frac{\mathrm{dx}}{1+2 \mathrm{x}}=\int \frac{\mathrm{dx}}{1-2 \mathrm{y}}$
$\Rightarrow \frac{1}{2} \log (1+2 \mathrm{x})=-\frac{1}{2} \log (1-2 \mathrm{y})+\frac{1}{2} \log \mathrm{c}$
$\Rightarrow \log (1+2 x)(1-2 y)=c \Rightarrow \mathrm{x}-\mathrm{y}-2 \mathrm{xy}=\mathrm{c}$
100. (c)

Order $=3$, Degree $=2$
101. (a)
$n p=3 \mathrm{npq}$, where $\mathrm{n}=$ no. of trials

$$
\begin{aligned}
& \Rightarrow \mathrm{q}=\frac{1}{3} \Rightarrow \mathrm{p}=\frac{2}{3} \\
& \mathrm{P}(\mathrm{x}=3)={ }^{5} \mathrm{C}_{3}\left(\frac{2}{3}\right)^{3} \times\left(\frac{1}{3}\right)^{2}=\frac{80}{243}
\end{aligned}
$$

102. (b)

Statement 1
$P(\bar{A} \cup \bar{B})=P(\bar{A})+P(B)-P(\bar{A} \cap B)$ is true.
Statement 2
$P(A \cap \bar{B})=P(B)-P(A \cap B)$ is false.
Statement 3
$P(A \cap B)=P(B) \times P(A / B)$ is true.
103.
$\sigma(\mathrm{x})=$?
$\sigma^{2}(\mathrm{y})=25 \Rightarrow \sigma(\mathrm{y})=5$
$\operatorname{CoV}(\mathrm{x}, \mathrm{y})=\frac{\operatorname{CoV}(\mathrm{x}, \mathrm{y})}{\sigma(\mathrm{x}) \sigma(\mathrm{y})}$
$\Rightarrow \sigma(\mathrm{x})=\frac{\operatorname{CoV}(\mathrm{x}, \mathrm{y})}{\mathrm{r}(\mathrm{x}, \mathrm{y}) \sigma(\mathrm{y})}=\frac{27 \times 5}{3 \times 5}=9$
\Rightarrow Variance of $x=\sigma^{2}(x)=81$
104. (b)
$P=(A \cup B)=1-P\left(A^{\prime} \cap B^{\prime}\right)$
$=1-[(1-0.4) \times(1-0.5)]$
$=1-0.3=0.7$
105. (d)

Mean of $x_{i}=\bar{x}$
Mean of $a+c y_{i}=\bar{x}$
Mean of $\mathrm{cy}_{\mathrm{i}}=\overline{\mathrm{x}}-\mathrm{a}$
Mean of $y_{i}=\frac{\bar{x}-a}{c}$
106. (d)

If $r=0$, lines of regression are perpendicular and when $r=1$, lines of regression are so, both statements are wrong.
107.

Solving $4 \overline{\mathrm{x}}-5 \overline{\mathrm{y}}+33=0$ and
$20 \overline{\mathrm{x}}+9 \overline{\mathrm{y}}-107=0$
We get $\overline{\mathrm{x}}=13, y=17$

108. (d)

Mean changes with changes in origin. Variance is independent to the choice of origin.
109. (c)

By the properties of deviation
110. (b)

On arranging these 12 numbers in ascending order, the sixth and seventh terms are 4.6 and 5.2.
\therefore Median $=\frac{4.6+5.2}{2}=4.9$

111. (c)

20% of $360^{\circ}=72^{\circ}$
112.

New mean $=5+5=10$
New $\sigma=$ Old $\sigma=2$
Coefficient of variation $=\frac{\sigma}{\text { mean }} \times 100$

$$
=\frac{2}{10} \times 100=20
$$

113.

Average speed $=\frac{5+15}{\frac{5}{30}+\frac{15}{45}}=\frac{20 \times 90}{15+30}$

$$
=40 \mathrm{~km} / \mathrm{hr}
$$

114.

(b)
$E=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$
$n(E)=6, n(S)=36 \Rightarrow P(E)=\frac{6}{36}=\frac{1}{6}$
115. (b)
$2 \mathrm{P}(\mathrm{A})=3 \mathrm{P}(\mathrm{B})$
$\Rightarrow \frac{2 \mathrm{P}(\mathrm{A})}{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}=\frac{3 \mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}$
$\Rightarrow \frac{1}{2} \times \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}=\frac{1}{3} \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}$
$\Rightarrow \frac{1}{2} \mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)=\frac{1}{3} \mathrm{P}(\mathrm{A} / \mathrm{B})$
$\Rightarrow \mathrm{P}(\mathrm{B} / \mathrm{A})<\mathrm{P}(\mathrm{A} / \mathrm{B})$
116. (c)
$n(E)=1, n(S)=10 \times 9=90$
$P(E)=1 / 90$
117.
(b)
$\mathrm{P}=\frac{1}{2}\left[\frac{3}{5}+\frac{5}{8}\right]=\frac{1}{2} \times \frac{49}{40}=\frac{49}{80}$
118. (b)

It $B \subset A$, then $P(A-B)=P(A)-$
$P(A \cap B)=P(A)+P(B)-2 P(A \cap B)$
Statement 1 is correct
P (A alone or B alone)
$=P(A)-P(A \cap B)+P(B)-P(A \cap B)$
$=P(A)+P(B)-2 P(A \cap B)$
Statement 2 is false.
It A and B are mutually exclusive, then
$P(A \cap B)=0$
$\Rightarrow-\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
Statement 3 is correct.
119.
(a)
$n(E)=C(4,2) \times C(5,1)=6 \times 5=30$
$\mathrm{n}(\mathrm{S})=\mathrm{C}(9,3)=84$
$P(E)=\frac{30}{84}=\frac{5}{14}$

General Ability Test NDA 12018 Question Paper

PART-A

SYNONYMS

Directions: Each item in this section consists of a sentence with an underlined word/words followed by four words. Select the option that is nearest in meaning to the underlined word/words and mark your response in your Answer Sheet accordingly.

1. I do not want you to lead a life of sycophancy as you did during the foreignrule.
a. admiration
b. love
c. appreciation
d. flattery
2. In India, It has become easy to attack cultural artefacts these days.
a. beckon
b. assault
c. belch
d. appreciate
3. A local court granted bail to the criminal on Thursday.
a. confessed
b. donated
c. allowed
d. yielded
4. The judge told that he would analyze the evidence and then deliver the verdict.
a. liberate
b. surrender
c. transfer
d. pronounce
5. The growth and development of the peasant movement was indissolubly linked with the national struggle for freedom.
a. firmly
b. vaguely
c. individually
d. steadily
6. Weather conditions have been improving over the past few days.
a. mending
b. amending
c. becoming better
d. advancing
7. The confusion on the interlocutor's face was gratifying.
a. government officer
b. party worker
c. dialogist
d. revolutionary
8. He spends his money lavishly.
a. hesitatingly
b. generously
c. foolishly
d. carefully
9. The government's new policies will come into force from the next fiscalyear.
a. calendar
b. academic
c. financial
d. leap
10. Abundant food was available for the soldiers in the mess.
a. little
b. plentiful
c. delicious
d. wholesome

ANTONYMS

Directions: Each item in this section consists of a sentence with an underlined word/words followed by four words. Select the option that is opposite in meaning to the underlined word/words and mark your response in your Answer Sheet accordingly.
11. The country's economy must be geared to wartime requirements.
a. subordinated to
b. related to
c. adjusted to
d. unlinked to
12. Why does fire attractinsects?
a. discharge
b. destroy
c. repel
d. remove
13. The party was excellent, and I would like to thank all the people concerned.
a. cared
b. attentive
c. dependable
d. uninvolved
14. He is very serious by temperament.
a. grave
b. trivial
c. sober
d. stupid
15. There are a few miscellaneous items to discuss in this meeting.
a. pure
b. mixed
c. homogenous
d. discordant
16. Due to the postal, strike, the outgoing mail got delayed.
a. urgent
b. incoming
c. ordinary
d. speedy
17. He had a fine ear for music.
a. small
b. close
c. coarse
d. smooth
18. There is no likeness between him and his brother.
a. unlikeliness
b. unlikelihood
c. dissimilarity
d. disaffinity
19. Cultural diversity in the working place is good for business.
a. uniformity
b. conformity
c. identity
d. similarity
20. The company was liquidated within five years.
a. bankrupt
b. closed down
c. flourishing
d. privatised

SPOTTING ERRORS

Directions: Each item in this section has a sentence with three underlined parts labelled (a), (b) and (c). Read each sentence to find out whether there is any error in any underlined part and indicate your response in the Answer Sheet against the corresponding letter i.e., (a) or (b) or (c). If you find no error, your response should be indicated as (d).
21. The politician lost face in his constituency a.
when he broke the pre-election promises b.
he made to his people. No error.
c.
d.
22. At the request of the Defence Attorney,
a.
the jury were called
b.
and their individual verdicts were recorded.
c.

Noerror.
d.
23. Frank Lloyd Wright has been acclaimed a.
by colleagues
b.
as the greater of all modem architects.
c.

No error.
b.
24. In my younger days

Icould run four miles b.
at a stretch.
c.
No error.
d.
25. The owner
as well as his servants
b.
is honest.
c.
No error.
d.

IDIOMS AND PHRASES

Directions: Given below are some idioms/phrases followed by four alternative meanings to each. Choose the response (a), (b), (c) or (d) which is the most appropriate expression.
26. Cry over spilt milk
a. Complaining about a loss in the past
b. Too much inquisitive about something
c. When something is done badly to save money
d. Dealing with a problem only in an emergency situation
27. Cut themustard
a. Prepare spices out of mustard seeds
b. To come up to expectations
c. Making absurd expectations
d. Very enthusiastic
28. Devil's advocate
a. A dangerous person
b. To present a counter argument
c. Very argumentative person
d. Creating an unpleasantsituation
29. Don't count your chickens before the eggs have hatched
a. If you are not good at something, better to avoid that
b. Don't make plans for something that might not happen
c. Not to come up to expectations
d. Don't put all your resources in one possibility
30. Give the benefit ofdoubt
a. Tobe partial to someone
b. To be judgmental
c. Regard someone as innocent until
d. Say something exactly right

ORDERING OF SENTENCES

Directions: In this section each item consists of six sentences of a passage. The first and sixth sentences are given in the beginning as SI and S6. The middle four sentences in each have been jumbled up and labelled $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S . You are required to find the proper sequence of the four sentences and mark your response accordingly on the Answer Sheet.
31. S1: The Subsidiary Alliance system was extremely advantageous to the British.
S6 : They controlled the defence and the foreign relations of the protected ally.
P : They could now maintain a large army at the cost of Indian states
Q : if any war occurred in the territories
R : either of the-British ally or of the Britishers
S : This enabled them to fight wars far away from their own territories
The proper sequence should be
a. P QR S
b. P S Q R
c. QRPS
d. S R P Q
32. S 1 : In reality, by signing a Subsidiary Alliance, an Indian state virtually signed away its independence.
S6: In fact, the Indian ruler lost all vestiges of sovereignty in external matters.
P : of maintaining diplomatic relations Q
: It lost the right of self defence
R : with its neighbours
S : and of settling its disputes

The proper sequence should be
a. P QR S
b. R S P Q
c. Q P S R
d. Q S R P
33. S1: A mighty popular Revolt broke out in Northern and Central India in 1857.
S6 : Millions of peasants, artisans and soldiers foughtheroically and wrote a glorious chapter.
P: Sepoys, or the Indian soldiers of the Company's army
Q : but soon engulfed wide regions and involved the masses
R : and nearly swept away the British rule
S: It began with a mutiny of the
The proper sequence should be
a. R S P Q
b. P Q R S
c. S R P Q
d. Q R P S
34. SI : The Indian Civil Service gradually developed into one of the most efficient and powerful civil services in the world.

S6: though these qualities obviously served British, and not Indianinterests.
P : and often participated in the making of policy independence, integrity and hard work
R : They developed certain traditions of S
: Its members exercised vast power The proper sequence should be
a. P QR S
b. Q R S P
c. R S Q P
d. S P R Q
35. SI : The ruin of Indian handicrafts was reflected in the ruin of the towns and cities which were famous for theirmanufactures.
S6: Centres were developed and laid waste.
P : Dacca, Surat, Murshidabad and many other rising industrial
Q : ravages of war and plunder, failed to
R : survive British conquest
S: Cities which had withstood the The
proper sequence should be
a. P QR S
b. S Q R P
c. S R PQ
d. Q R S P

COMPREHENSION

Directions: In this section you have few short passages. After each passage, you will find some items based on the passage. First, read a passage and answer the items based on it. You are required to select your answers based on the contents of the passage and opinion of the author only.

Passage

The rule of the road means that in order that the liberties of all may be preserved, the liberties of everybody must be curtailed. When the policeman, say, at a road-crossing steps into the middle of the road and puts out his hand, he is the symbol not of tyranny but of liberty. You have submitted to a curtailment of private liberty in order that you may enjoy a social order which makes your liberty a
reality. We have both liberties to preserve - our individual liberty and our social liberty. That is, we must have a judicious mixture of both. I shall not permit any authority to say that my child must go to this. school or that, shall specialize in science or arts. These things are personal. But if I say that my child shall have no education at all, then society will thinly tell me that my child must have education whether I like it or not.
36. According to the author, the "rule of the road" implies
a. the rule regulating the traffic on the road
b. the principle on which a road is constructed to ensure safe traffic
c. unrestricted freedom for all to lead a happy life
d. restricted individual freedom to ensure freedom for all
37. The author thinks that when a policeman signals you to stop on a road-crossing, he is
a. behaving in a whimsical manner
b. interfering with your freedom to use the road
c. protecting the liberty of all to use the road
d. mischievously creating hurdles in your way from some personal motive
38. The author is of the view that we should
a. have absolute individual liberty without any restrictions imposed by the society
b. have everything controlled by the society without any kind of individualliberty
c. try to strike a sensible balance between our individual liberty and our social liberty
d. have more of social liberty than individual liberty
39. The author holdsthat
a. educating or not educating his child is a matter of personal liberty
b. educating or not educating his child is also a matter of socialliberty
c. choosing the school for his child is a matter of social liberty
d. choosing the subject of study for his child is a matter of social liberty
40. The most suitable title of the passage would be
a. The Policeman at a Road Crossing
b. The Laws of the Road
c. Importance of Liberty
d. Education of Children

Passage

My most interesting visitor comes at night, when the lights are still burning - a tiny bat who prefers to fly in through the open door and will use the window only if there is no alternative. His object in entering the house is to snap up the moths that cluster around the lamps. All the bats I have seen fly fairly high, keeping near the ceiling; but this particular bat flies in low, like a dive-
bomber, zooming in and out of chair legs and under tables. Once, he passed straight between my legs.
Has his radar gone wrong, I wondered, or is he just plain crazy?
41. Consider the following statements:

1. The tiny bat flew in low like a dive-bomber.
2. The tiny bat like) all bats keeps near the ceiling.
3. It has lost direction because its radar has gone wrong.
4. It wants to entertain the author with its skill in flying.
Which of the above statements may be assumed to be true from the information given in the passage?
a. 1 only
b. 1 and 3
c. 2 and 4
d. 3 and 4
5. The bat entered the room
a. because there was no alternative
b. to eat the moths round the lamps
c. as it had gone mad
d. as it preferred to fly in through the open door
6. After comparing the habits of the tiny bat with those of other bats, the author was
a. sure, that this bat had lost its direction
b. notsure of its preferences
c. surprised to find that it was an expert flier
d. unable to give the correct explanation for its behaviour
7. The author calls the tiny bat an "interesting visitor". This means
a. the bat visits him at night
b. the bat is interested in the moths
c. this bat has peculiar qualities
d. this bat surprises him by zooming in and out like a dive-bomber
8. What, according to you, can be the most suitable title for the passage?
a. Someone visits me
b. Night of Mysteries
c. My Nocturnal Visitor
d. A Funny Visitor

FILL IN THE BLANK

Directions: Each of the following sentences in this section has a blank space and four words or group of words given after the sentence. Select the word or group of words you consider most appropriate for the blank space and indicate your response on the Answer Sheet accordingly
46. The tired traveller \qquad on in the hope of finding some resting place.
a. strolled
b. scurried
c. paraded
d. plodded
47. The car was damaged beyond repair in the accident.
a. outrageous
b. ghastly
c. nasty
d. heinous
48. They gave a \qquad dinner to celebrate the occasion, which impressed every guest.
a. austere
b. public
c. sumptuous
d. summary
49. Once the \qquad manuscript is received by the publishers, it is typed in double space.
a. total
b. full
c. complete
d. filled
50. I amused to in queues.
a. stand
b. standing
c. stand up
d. standing still

PART-B

51. Which one of the following statements is correct?
a. Any energy transfer that does not involve temperature difference in some way is not heat
b. Any energy transfer always requires a temperature difference
c. On heating the length and volume of the object remain exactly the same
d. Whenever there is a temperature difference, heat is the only way of energy transfer
52. If T is the time period of an oscillating pendulum, which one of the following statements is NOT correct?
a. The motion repeats after time T only once
b. T is the least time after which motion repeats itself
c. The motion repeats itself after nT , where n is a positive integer
d. T remains the same only for small angular displacements
53. If an object moves with constant velocity then which one of the following statements is NOT correct?
a. Its motion is along a straight line
b. Its speed changes with time
c. Its acceleration is zero
d. Its displacement increases linearly with time
54. An object, is moving with uniform acceleration a. Its initial velocity is it and after time t its velocity is v. The equation of its motion is $v=u+a t$. The velocity (along y-axis) time (along x -axis) graph shall be a straight line
a. passing through origin
b. with x-interceptu
c. with y-interceptu
d. with slope u
55. What is the net force experienced by a bar magnet placed in auniform magnetic field?
a. Zero
b. Depends upon length of the magnet
c. Never zero
d. Depends upontemperature
56. Which one of the following has maximum inertia
a. An atom
b. A molecule
c. A one-rupee coin
d. A cricketball
57. Which one of the following is the value of 1 kWh of energy converted into joules?
a. $1.8 \times 10^{6} \mathrm{~J}$
b. $3.6 \times 10^{6} \mathrm{~J}$
c. $6.0 \times 10^{6} \mathrm{~J}$
d. $7.2 \times 10^{6} \mathbf{J}$
58. Which one of the following statements about gravitational force is NOTcorrect?
a. It is experienced by all bodies in theuniverse
b. It is a dominant force between celestial bodies
c. It is a negligible force for atoms
d. It is same for all pairs of bodies in our universe
59. Whether an object will float or sink in a liquid, depends on
a. mass of the objectonly
b. mass of the object and density of liquid only
c. difference in the densities of the object and liquid
d. mass and shape of the object only
60. Which one of the following devices is non-ohmic
a. Conducting copper coil
b. Electric heating coil
c. Semi conductor diode
d. Rheostat
61. Which one of the following is the natural phenomenon based on which a simple periscope works?
a. Reflection oflight
b. Refraction of light
c. Dispersion of light
d. Total internal reflection of light
62. Which one of the following frequency ranges is sensitive to human ears?
a. $0-200 \mathrm{~Hz}$
b. $20-20,000 \mathrm{~Hz}$
c. $200-20,000 \mathrm{~Hz}$ only
d. $2,000-20,000 \mathrm{~Hz}$ only
63. The accidental touch of Nettle leaves creates a burning sensation, which is due to inject of
a. Hydrochloric acid
b. Methanoic acid
c. Citric acid
d. Sulphuric acid
64. Which of the following properties is true for a tooth paste?
a. It is acidic
b. It is neutral
c. It is basic
d. It is made up of calcium phosphate, the material of toothenamel
65. Which one of the following gives the highest amount of hydrogen ions $\left(\mathrm{H}^{+}\right)$?
a. Sodium hydroxide solution
b. Milk of magnesia
c. Lemon juice
d. Gastric juice
66. Brine is an aqueous solutionof
a. NaCl
b. NaOH
c. NaHCO_{3}
d. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
67. Which one of the following is the chemical formula of Washing Soda?
a. NaHCO_{3}
b. $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
d. NaOH
68. Which one of the following is NOT true for bleaching powder?
a. It is used as a reducing agent in chemical industries
b. It is used for bleaching wood pulp in paper factories
c. It is used for disinfecting drinking water
d. It is used for bleaching linen in textile industry
69. AIDS is caused by a virus whose genetic material is
a. single stranded circular DNA
b. double stranded DNA
c. single stranded RNA
d. double stranded RNA
70. Which one of the following is an organelle that is NOT found in prokaryoticcells?
a. Cell wall
b. Mitochondria
c. Plasma membrane d
. Ribosome
71. Which one of the following parts of body does NOT take part in the process of breathing?
a. Bronchi
b. Bowman's capsule
c. Diaphragm
d. Trachea
72. Which one of the following statements about classification of plants iscorrect?
a. Thallophytes have well differentiated body design
b. Funaria is afungus
c. All Pteridophytes arePhanerogams
d. Vascular system is not found among Bryophytes
73. Which one of the following is the correct sequence of levels of hierarchy of classification of organisms from higher to lower?
a. Phylum - Class - Order - Family - Genus
b. Phylum - Class - Family - Order - Genus
c. Family - Order - Class - Species - Genus
d. Class - Family - Order - Species - Genus
74. Which one of the following statements about meristematic tissues in plants is correct?
a. These are dead tissues and form wood
b. They provide flexibility to plant due to their thickened walls
c. These are present in the bark of a tree only
d. Growth occurs in plants due to division of cells of these tissues
75. Which one of the following Union Territories has the highest female literacyrate?
a. Chandigarh
b. Ladshadweep
c. Andaman and NicobarIslands
d. Puducherry
76. Consider the following statements about Roaring Forties :
77. They are strong Westerly winds found in the oceans of SouthernHemisphere.
78. The strong east to west air currents are caused by the combination of air being displaced from the Equator towards the South Pole and the earth's rotation and abundance of landmasses to serve as wind breaks.
Which of the statements given above is / are correct?
a. 1 only
b. 2 only
c. Both 1 and 2
d. Neither 1 nor 2
79. Consider the following statements:
80. The doldrums is a low pressure area around Equator where the prevailing winds are calm.
81. Chinook is a hot and dry wind that blows in winter and therefore raises the temperature in a shorttime.
Which of the statements given above is / are correct?
a. 1 only
b. 2 only
c. Both 1 and 2
d. Neither 1 not 2
82. Which one of the following is the driest desert of the world?
a. Atacama
b. Gobi
c. Sahara
d. Kalahari
83. Which of the following statements about latent heat for a given substance is/ are correct?
84. It is fixed at a given temperature.
85. It depends upon the temperature and volume.
86. It is independent of temperature and volume.
87. it depends on the temperature but independent of volume.
Select the correct answer using the code given below:
a. 2
b. 1 and 3
c. 4 only
d. 1 and 4
88. Which one of the following statements about the mass of a body is correct?
a. It changes from one place to another
b. It is same everywhere
c. It depends on its shape
d. It does not depend on its temperature
89. A ball balanced on the vertical rod is an example of
a. stable equilibrium
b. unstable equilibrium
c. neutral equilibrium
d. perfect equilibrium
90. Which of the following statements about a fluid at rest in cup is / are correct?
91. Pressure is same at all the points in the fluid.
92. Pressure is exerted on the walls.
93. Pressure exists everywhere in the fluid.

Select the correct answer using the code given below
a. 1 only
b. 2 only
c. 2 and 3 only
d. 1,2 and 3
83. Which one of the following devices is used to measure atmospheric pressure?
a. Ammeter
b. Barometer
c. Potentiometer
d. Lactometer
84. Which one of the following is the number of water molecules that share with two formula unit CaSO_{4} in plaster of Paris?
a. One
b. Two
c. Five
d. Ten
85. How is carbon black obtained?
a. By heating wood at high temperature in absence of air
b. By heating coal at high temperature in absence of air
c. By burning hydrocarbons in a limited supply of air
d. By heating coal at high temperature in presence of air
86. Which one of the following properties is NOT true for graphite?
a. Hybridisation of each carbon atom is sp^{3}
b. Hybridisation of each carbon atom is sp 2
c. Electrons are delocalized over the whole sheet of atoms
d. Each layer is composed of hexagonal rings
87. Which one of the following is the purest forms of Carbon?
a. Charcoal
b. Coke
c. Fullerene
d. Carbon black
88. The Poisonous nature of Carbon monoxide (CO) is due to its
a. Insolubility in water
b. Ability to form a complex with haemoglobin
c. Ability to reduce some metaloxides
d. Property of having one sigmabond
89. Which one of the following elements is needed in the human body to transfer electrical signals by nerve cells?
a. Lithium
b. Sodium
c. Rubidium
d. Caesium
90. Who among the following first discovered cell?
a. Robert Brown
b. Robert Hooke
c. Leeuwenhoek
d. Rudolf Virchow
91. Which one of the following group of organisms forms a foodchain?
a. Grass, human and fish
b. Grass, goat and human
c. Tree, tree cutter and tiger
d. Goat, cow and human
92. Which one of the following types of tissues will have contractile proteins?
a. Nervous tissue
b. Muscle tissue
c. Bone tissue
d. Blood tissue
93. If by an unknown accident the acid secreting cells of the stomach wall of an individual are damaged, digestion of which of the following biomolecule will be affected to agreater extent?
a. Protein only
b. Lipid
c. Carbohydrate only
d. Protein and Carbohydrate
94. In which one of the following places, Headquarters of a Railway Zone is located?
a. Kanpur
b. Lucknow
c. Hajipur
d. New Jalpaiguri
95. Which of the following statements about Indian Academy of Highway Engineers is/are correct?

1. It is a registered society.
2. It is a collaborative body of both Central Government and StateGovernments.
Select the correct answer using the code given below:
a. 1 only
b. 2 only
c. Both 1 and 2
d. Neither 1 nor 2
3. Which one of the following is NOT a tributary of Indus River?
a. Beas
b. Ravi
c. Chenab
d. Tawi
4. Which one among the following is the largest tiger reserve of India in terms of area of the core / critical tiger habitat?
a. Manas
b. Pakke
c. Nagarjunasagar Srisailam
d. Periyar
5. Which one of the following is NOT A coastal depositional feature?
a. Tombolo
b. Sand bar
c. Stack
d. Spit
6. Which of the following is / are coastal erosional feature (s)?
7. Notch
8. Sea Arch
9. Cliff
10. Hook

Select the correct answer using the code given below:
a. 1,2 and 3
b. 2, 3 and 4
c. 2 and 3 only
d. 1 only
100. Chemical weathering of rocks is much greater in a place with
a. cold and dry climate
b. hot and humid climate
c. hot and dry
d. cold and humid climate
101. Which of the following statements about specific heat of the body is / are correct?

1. It depends upon mass and shape of the body
2. It is independent of mass and shape of the body
3. It depends only upon the temperature of the body
Select the correct answer using the code given below:
a. 1 only
b. 2 and 3
c. 1 and 3
d. 2 only
4. Which one of the following is an example of the force of gravity of the earth acting on a vibrating pendulum bob?
a. Applied force
b. Frictional force
c. Restoring force
d. Virtual force
5. Which one of the following statements about the refractive index of a material medium with respect to air is correct?
a. It can be either positive or negative
b. Itcan have zero value
c. It is unity for all materials
d. It is always greater than one
6. Which one of the following statements about magnetic field lines is NOT correct?
a. They can emanate from a point
b. They do not cross each other
c. Field lines between two poles cannot be precisely straight lines at the ends
d. There are no field lines within a bar magnet
7. Two convex lenses with power 2 dioptre are kept in contact with each other. The focal length of the combined lenssystem is
a. 0.10 m
b. 2 m
c. 4 m
d. 0.25 m
8. Which one of the following alkali metals haslowest melting point?
a. Sodium
b. Potassium
c. Rubidium
d. Caesium
9. Which one of the following metals is alloyed with sodium to transfer heat in a nuclearreactor?
a. Potassium
b. Calcium
c. Magnesium
d. Strontium
10. Which one of the following metals is used in the filaments of photo-electric cells that convert light energy into electric energy?
a. Tungsten
b. Copper
c. Rubidium
d. Aluminium
11. Which of the following statements about Ring of Fire is / are correct?
12. It is a zone of convergence plate boundaries
13. It is an active seismic and volcanic zone
14. It is associated with deep trench

Select the correct answer using the code given below :
a. 1 and 2 only
b. 2 and 3 only
c. 1 only
d. 1,2 and 3
110. Which one of the following Himalayan vegetation species is found between the altitudes of 1800 to 2600 metres?
a. Saal
b. Chir
c. Spruce
d. Deodar
111. Which one of the following rivers is NOT a tributary of river Cauvery?
a. Hemavati
b. Arkavati
c. Indravati
d. Amravati
112. Which of the following conditions is/are essential for tea cultivation?

1. Tropical and sub-tropical climate
2. Heavy rainfall ranging from 150 cm to 250 cm
3. Soil should contain good amount of lime

Select the correct answer using the code given below:
a. 1,2 and 3
b. 1 and 2 only
c. 2 and 3 only
d. 1 only
113. Bharatmala Project is related to
a. Improving road connectivity
b. Interlinking ports andrailways
c. Interlinking of rivers
d. Interlinking major cities with gas pipelines
114. Which one of the following is a local wind that blows outfrom Siberia?
a. Bora
b. Purga
c. Mistral
d. Blizzard
115. Which one of the following centres in NOT known for iron and steel industry?
a. Bhadravati
b. Salem
c. Vishakhapatnam
d. Renukoot
116. Which of the following are essential pre-requisites for establishment of a thermal power station?

1. Availability of fossil fuels
2. Proximity to a river, lake or sea
3. Good transport network
4. Proximity to anurban centre

Select the correct answer using the code given below:
a. 1,2 and 3
b. 2 and 4
c. 2 and 3only
d. 1 and 3 only
117. Which of the following statements about 'Aadi Mahotsav' held recently in New Delhi is/are correct?

1. The theme of the festival was 'A Celebration of the Spirit of Tribal Culture, Cuisine and Commerce'
2. The festival was organized by the Ministry of Tourism, Government of India
Select the correct answer using the code given below :
a. 1 only
b. 2 only
c. Both 1 and 2
d. Neither 1 nor 2
3. Light year is a unit for measurement of
a. age of universe
b. very small time intervals
c. very high temperature
d. very large distance
4. Which of the following statements about electromagnetic waves, sound waves and water waves is/are correct?
5. They exhibit reflection
6. They carry energy
7. They exert pressure
8. They can travel in vacuum

Select the correct answer using the code given below:
a. 1, 2 and 3
b. 2 and 4
c. 1 and 3 only
d. 1 only
120. Thermal capacity of a body depends on the
a. mass of the body only
b. mass and shape of the body only
c. density of the body
d. mass, shape and temperature of the body
121. Who among the following first used the term 'Industrial Revolution' in English to describe the changes that occurred in British industrial development between 1760 and 1820 ?
a. Karl Marx
b. Georges Michelet
c. Arnold Toynbee
d. Friedrich Engels
122. Which one of the following statements about the Olympe de Gouges (1748-1793) is correct ?
a. She declared that although citizens should have equal rights, they are not entitled to the same honours by the State
b. She was a supporter of the Jacobin government
c. She was jailed for treason by the National Assembly
d. She declared that the nation is the union of woman and man.
123. Who among the following built a model steam engine in 1698 called "Miner's Friend" to drain mines?
a. Thomas Savery
b. Thomas Newcomen
c. James Watt
d. Richard Arkwright
124. Which one of the following statements about Renaissance" Humanist culture is NOT true?
a. It slackened the control of religion over human life
b. It believed thathuman nature.wasmany-sided
c. It was concerned with good manners
d. It criticized material wealth, power and glory
125. Who gifted the Badshah Nama toKing George in 1799?
a. Abul Fazl
b. Abdul Hamid Lahori
c. Nawab of Awadh
d. William Jones
126. What is the name of the award given to meritorious men in the Mughal Court in the form of a robe of honour that was once worn by the Emperor?
a. Sarapa
b. Patka
c. Padma murassa
d. Khilat
127. Who among the following social reformer started a society for the encouragement of widow remarriage in 1866 in Maharashtra?
a. Bal Gangadhar Tilak
b. Jyotirao Phule
c. Vishnushastri Pandit
d. Pandita Ramabai
128. Name the first major voluntary associa-tion representing primarily Indian land-lord interests that was set up in Calcutta in 1851?
a. British Indian Association
b. Landholder's Society
c. Madras Native Association
d. Bombay Association
129. Who among the following introduced the Permanent Settlement of Bengal in 1793?
a. Lord Cornwallis
b. Lord Ripon
c. Robert Clive
d. John Adam
130. Name the rebel who fought against the British in the battle of Chinhat in the course of the 1857 Revolt?
a. Ahmadullah Shah
b. Shah Mal
c. Mangal Pandey
d. Kunwar Singh
131. Who among the following are the two civil servants who civil servants who assisted the constituent Assembly in framing the constitution of India?
a. B.N. Rau and K.M.Munshi
b. S.N. Mukherjee and Alladi Krishna swamy Aiyar
c. B.N. Rau andS.N. Mukherjeet
d. K.M. Munshi and Alladi Krishna swamy Aiyar
132. Which member of the constituent Assembly proposed the resolution that the National Flag of India be a "horizontal tricolour of saffron, which and dark green in equal proportion", with a wheel in navy blue at the centre?
a. Jawaharlal Nehru
b. B. R. Ambedkar
c. Rajendra Prasad
d. Sardar Valabhbhai Patel
133. Which of the following is / are NOT historical biography / biographies?

1. Dipavamsa
2. Harshacharita
3. Vikramankadevacharita
4. Prithvirajavijaya

Select the correct answer from the code given below:
a. 1 only
b. 2 and 3 only
c. 2,3 and 4 only
d. $1,2,3$ and 4
134. Which of the following pairs are correctly matched?
Traveller
Country from

1. Marco Polo
Italy
2. Ibn Battutu
3. Nikitin
Morocco
4. Seydi Ali Reis
Russia

Select the correct answer using the code given below:
a. 1,2 and 3 only
b. 2 and 3 only
c. $1,2,3$ and 4
d. 1 , and 4 only
135. Which of the following clans are included in the Agnikula Rajputs?

1. Pratiharas
2. Chaulukyas
3. Paramaras
4. Chahamanas

Select the correct answer using the code given below
a. 1 and 3 only
b. 1, 3 and 4 only
c. $1,2,3$ and 4
d. 2 , and 4 only
136. Who among the following was the author of Humayun Nama?
a. Roshanara Begum
b. Ruquaiya Sultan Begum
c. Gulbadan Begum
d. Gauhara Begum
137. Which one of the following about the Parliament of India is NOT correct?
a. The Parliament consists of the President, the Lok Sabha and the Rajya Sabha
b. There are no nominated members in the Lok Sabha
c. The Rajya Sabha cannot be dissolved
d. Some members of the Rajya Sabha are nominated by the President
138. Which one of the following statements with regard to the comptroller and Auditor General (CAG) of India is NOT correct?
a. He is appointed by the President of India
b. He can be removed from office in the same way as the judge of the Supreme Court of India
c. The CAG is eligible for further office under the Government of India after he has ceased the hold his office
d. The salary of the CAG is charged upon the Consolidated fund of India
139. The Superintendence, direction and control of elections in India is vested in
a. The Supreme Court of India
b. The Parliament of India
c. The Election Commission of India
d. The Chief ElectionCommissioner
140. Which of the following provision (s) of the Constitution of India became effective from 26th November 1949?

1. Elections
2. Citizenship
3. Emergency provisions
4. Appointment of the Judges

Select the correct answer using the code given below
a. 1 only
b. 1 and 2 only
c. 1,2 and 3
d. 2 and 4
141. Which of the following statements regarding construction of Rohtang tunnel is NOT correct?
a. It is located at an altitude of 5,000 feet
b. It will provide all-year connectivity to Lahaul and Spiti Valley
c. The tunnel is being built by the border Roads organization
d. It will reduce the length of the Leh Manali highway by approximately 50 km
142. Who among the following recently became the first woman pilot in IndianNavy?
a. Astha Segal
b. Roopa A
c. Sakthi Maya
d. Shubhangi Swaroop
143. Who among the following Indians did NOT hold the title of Miss World?
a. Reita Faria
b. Sushmita Sen
c. Diana Hayden
d. Yukta Mookhey
144. Which one of the following countries has failed to qualify for the first time in 60 years for the FIFA world cup to be held in Russia in the year 2018?
a. Mexico
b. Iran
c. Saudi Arabia
d. Italy
145. The Defence Technology and Trade Initiative (DTTI) is a forum for dialogue on defence partnership between India and
a. Russia
b. United State of America
c. Israel
d. France
146. As per the policy applicable in 2017, how much Foreign Direct Investment (FDI) is permitted in the defence sector in India?
a. 49 per cent through the automatic route
b. 26 per cent through the government route
c. 26 per cent through the automatic route and beyond that up to 499 per cent through the government route
d. 75 per cent through the automatic route
147. Which one of the following countries did NOT participate in the 21st edition of Exercise Malabar?
a. United State of America
b. Japan
c. India
d. Australia
148. Justice Dalveer Bhandari of India was recently reelected to the International Court of Justic after Christopher Greenwood pulled out before 12th round of voting. Christopher Greenwood was a nominee of
a. Canada
b. Russia
c. Britain
d. USA
149. In order of review the Income Tax Act, 1961 and to draft a new Direct Tax Law in consonance with economic needs of the country, the Government of India in November 2017 has constituted a Task Force. Who the following is made the convenor of it?
a. Shri ArvindSubramanian
b. Shri ArvindModi
c. Shri Amitabh Kant
d. Dr. Bibek Debroy
150. The 5th Global Conference on Cyber Space (GCCS) was held in New Delhi in November, 2017. Which of the following statements about GCCS is / are correct?

1. The 4th version of GCCS was held in London.
2. The main them of GCCS 2017 is 'Cyber4All: A Secure and Inclusive Cyberspace for Sustainable Development'.
3. 'Bindu' is the logo GCCS 2017.

Select the correct answer using the code given below:
a. 1 only
b. 2 only
c. 2 and 3 only
d. 1, 2 and 3

General Ability Test NDA 12018 Answer Keys

PART-A				PART-B							
Q No.	Ans.										
1	D	26	A	51	A	76	A	101	B	126	A
2	B	27	B	52	A	77	C	102	C	127	C
3	C	28	C	53	B	78	A	103	D	128	A
4	D	29	B	54	C	79	C	104	D	129	A
5	A	30	C	55	A	80	B	105	D	130	A
6	C	31	B	56	D	81	B	106	D	131	C
7	C	32	C	57	B	82	B	107	A	132	A
8	C	33	A	58	D	83	B	108	C	133	A
9	C	34	D	59	C	84	A	109	D	134	C
10	B	35	B	60	C	85	C	110	B	135	C
11	D	36	D	61	A	86	A	111	C	136	C
12	C	37	C	62	B	87	D	112	A	137	B
13	D	38	C	63	B	88	B	113	A	138	C
14	B	39	B	64	D	89	B	114	B	139	C
15	C	40	C	65	D	90	B	115	D	140	B
16	B	41	A	66	A	91	B	116	A	141	C
17	C	42	B	67	B	92	B	117	A	142	C
18	A	43	D	68	A	93	A	118	D	143	B
19	A	44	D	69	C	94	C	119	A	144	D
20	C	45	C	70	B	95	C	120	A	145	B
21	C	46	D	71	B	96	D	121	C	146	A
22	D	47	A	72	D	97	C	122	D	147	D
23	C	48	C	73	A	98	C	123	A	148	C
24	B	49	C	74	D	99	A	124	D	149	B
25	D	50	B	75	B	100	B	125	C	150	B

1. If $x+\log _{10}\left(1+2^{x}\right)=x \log _{10}+\log _{10} 6$ then x is equal to
(a) $2,-3$
(b) 2 only
(c) 1
(d) 3
2. The remainder and the quotient of the binary division
$(101110)_{2} \div(110)_{2}$ are respectively
(a) $(111)_{2}$ and $(100)_{2}$
(b) $(100)_{2}$ and $(111)_{2}$
(c) $(101)_{2}$ and $(111)_{2}$
(d) $(100)_{2}$ and $(100)_{2}$
3. The matrix A has x rows and $x+5$ columns. The matrix B has y rows and $11-\mathrm{y}$ columns. Both AB and BA exist. What are the values x and y respectively?
(a) 8 and 3
(b) 3 and 4
(c) 3 and 8
(d) 8 and 8
4. If $\mathrm{S}_{\mathrm{n}}=\mathrm{nP}+\frac{\mathrm{n}(\mathrm{n}-1) \mathrm{Q}}{2}$, where S_{n} denotes the sum of the first n terms of an AP, then the common difference is
(a) $P+Q$
(b) $2 P+3 Q$
(c) $2 Q$
(d) Q
5. The roots of the equation
$(q-r) x^{2}+(r-p) x+(p-q)=0$ are
(a) $(\mathrm{r}-\mathrm{p}) /(\mathrm{q}-\mathrm{r}), 1 / 2$
(b) $(p-q) /(q-r), 1$
(c) $(q-r) /(p-q), 1$
(d) $(r-p) /(p-q), 1 / 2$
6. If E is the universal set and $A=\mathrm{B} \cup \mathrm{C}$, then the set
$E-(E-(E-(E-(E-A))))$ is same as the set
(a) $\mathrm{B}^{\prime} \cup \mathrm{C}^{\prime}$
(b) $\mathrm{B} \cup \mathrm{C}$
(c) $\mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}$
(d) $\mathrm{B} \cap \mathrm{C}$
7. If $A=\{x: x$ is a multiple of 2$\}, B=\{x: x$ is a multiple of 10$\}$, then $A \cap(B \cap C)$ is equal to
(a) A
(b) B
(c) C
(d) $\{x: x$ is a multiple of 100$\}$
8. If α and β are the roots of the equation $1+x+$ $\mathrm{x}^{2}=0$, then the matrix product
$\left[\begin{array}{ll}1 & \beta \\ \alpha & \alpha\end{array}\right]\left[\begin{array}{ll}\alpha & \beta \\ 1 & \beta\end{array}\right]$ is equal to?
(a) $\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$
(b) $\left[\begin{array}{cc}-1 & -1 \\ -1 & 2\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]$
(d) $\left[\begin{array}{ll}-1 & -1 \\ -1 & -2\end{array}\right]$
9. If $|a|$ denotes the absolute value of an integer, then which of the following are correct?
I. $\quad|a b|=|a||b|$
II. $|a+b| \leq|a|+|b|$
III. $|a-b| \geq|a|-|b|$

Select the correct answer using the code given below.
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2, and 3
10. How many different permutations can be made out of the letters of the word "PERMUTATION"?
(a) 19958400
(b) 19954800
(c) 19952400
(d) 39916800
11. If $\mathrm{A}=\left[\begin{array}{cc}4 \mathrm{i}-6 & 10 \mathrm{i} \\ 14 \mathrm{i} & 6+4 \mathrm{i}\end{array}\right]$ and $\mathrm{k}=\frac{1}{2 \mathrm{i}}$, where $\mathrm{i}=$ $\sqrt{-1}$, then $k A$ is equal to
(a) $\left[\begin{array}{cc}2+3 \mathrm{i} & 5 \\ 7 & 2-3 \mathrm{i}\end{array}\right]$
(b) $\left[\begin{array}{cc}2-3 \mathrm{i} & 5 \\ 7 & 2+3 \mathrm{i}\end{array}\right]$
(c) $\left[\begin{array}{cc}2-3 \mathrm{i} & 7 \\ 5 & 2+3 \mathrm{i}\end{array}\right]$
(d) $\left[\begin{array}{cc}2+3 \mathrm{i} & 5 \\ 7 & 2+3 \mathrm{i}\end{array}\right]$
12. The sum of all real roots of the equation $|x-3|^{2}+|x-3|-2=0$ is
(a) 2
(b) 3
(c) 4
(d) 6
13. If is given that the roots of the equation $x^{2}-$ $4 \mathrm{x}-\log _{3} \mathrm{P}=0$ are real. For this, the minimum value of P is
(a) $\frac{1}{27}$
(b) $\frac{1}{64}$
(c) $\frac{1}{81}$
(d) 1
14. If A is a square matrix, then the value of adj $A^{T}-(\operatorname{adj} A)^{T}$ is equal to
(a) A
(b) $2|\mathrm{~A}| \mathrm{I}$, where I is the identity matrix
(c) Null matrix whose order is same as that of A
(d) Unit matrix whose order is same as that of A
15. The value of the product
$6^{\frac{1}{2}} \times 6^{\frac{1}{4}} \times 6^{\frac{1}{8}} \times 6^{\frac{1}{16}} \times \ldots$ up to infinite terms is
(a) 6
(b) 36
(c) 216
(d) 512
16. The value of the determinant $\left|\begin{array}{lll}\cos ^{2} \frac{\theta}{2} & \sin ^{2} & \frac{\theta}{2} \\ \sin ^{2} \frac{\theta}{2} & \cos ^{2} \frac{\theta}{2}\end{array}\right|$ for all values of θ, is
(a) 1
(b) $\cos \theta$
(c) $\sin \theta$
(d) $\cos \theta$
17. The number of terms in the expansion of $(x+a)^{100}+(x-a)^{100}$ after simplification is
(a) 202
(b) 101
(c) 51
(d) 50
18. In the expansion of $(1+)^{50}$, the sum of the coefficients of odd powers of x is
(a) 2^{26}
(b) 2^{49}
(c) 2^{50}
(d) 2^{51}
19. If a, b, c are non-zero real numbers, then the inverse of the matrix
$\mathrm{A}=\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]$
(a) $\left[\begin{array}{ccc}a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1}\end{array}\right]$
(b) $\frac{1}{\mathrm{abc}}\left[\begin{array}{ccc}\mathrm{a}^{-1} & 0 & 0 \\ 0 & \mathrm{~b}^{-1} & 0 \\ 0 & 0 & \mathrm{c}^{-1}\end{array}\right]$
(c) $\frac{1}{\mathrm{abc}}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(d) $\frac{1}{\mathrm{abc}}\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]$
20. A person is to count 4500 notes. Let a_{n} denote the number of notes he counts in the nth minute.
If $\mathrm{a}_{1}=\mathrm{a}_{2}=\mathrm{a}_{3}=. .=\mathrm{a}_{10}=150$, and $\mathrm{a}_{10}, \mathrm{a}_{11}, \mathrm{a}_{12} \ldots$ are in AP with the common difference -2 , then the time taken by him to count all the notes is
(a) 24 minutes
(b) 34 minutes
(c) 125 minutes
(d) 135 minutes
21. The smallest positive integer n for which $\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^{\mathrm{n}}=1$, is
(a) 1
(b) 4
(c) 8
(d) 16
22. If we define a relation R on the set $N \times N$ as (a,
b) $R(c, d) \Leftrightarrow a+d=b+c$ for all $(a, b),(c, d) \in$ $\mathrm{N} \times \mathrm{N}$, then the
(a) Symmetric only
(b) Symmetric and transitive only
(c) Equivalence relation
(d) Reflexive only
23. If $y=x+x^{2}+x^{3}+\cdots$ up to infinite terms, where $\mathrm{x}<1$, then which of the following is correct?
(a) $x=\frac{y}{1+y}$
(b) $x=\frac{y}{1-y}$
(c) $x=\frac{1+y}{y}$
(d) $x=\frac{1-y}{y}$
24. If α and β are the roots of the equation $3 x^{2}+$ $2 \mathrm{x}+1=0$, then equation whose roots are $\alpha+$ β^{-1} and $\beta+\alpha^{-1}$ is
(a) $3 x^{2}+8 x+16=0$
(b) $3 x^{2}-8 x-16=0$
(c) $3 \mathrm{x}^{2}+8 \mathrm{x}-16=0$
(d) $x^{2}+8 x+16=0$
25. The value of
$\frac{1}{\log _{3} \mathrm{e}}+\frac{1}{\log _{3} \mathrm{e}^{2}}+\frac{1}{\log _{3} \mathrm{e}^{4}}+\cdots$
Up to infinite terms is
(a) $\log _{e} 9$
(b) 0
(c) 1
(d) $\log _{e} 3$
26. A tea party is arranged for 16 people along two sides of a long table with eight chairs on each side. Four particular men wish to sit on one particular side and two particular men on the other side. The number of ways they can be seated is
(a) $24 \times 8!\times 8$!
(b) $(8!)^{3}$
(c) $210 \times 8!\times 8$!
(d) 16 !
27. The system of equation $k x+y+z=1$, $x+k y+z=k$ and $x=y+k z=k^{2}$ has no solution if k equals
(a) 0
(b) 1
(c) -1
(d) -2
28. If $1.3+2.3^{2}+3.3^{3}+\cdots+n .3^{n}=\frac{(2 n-1) 3^{a}+b}{4}$ Then a and b are respectively
(a) $n, 2$
(b) $n, 3$
(c) $\mathrm{n}+1,2$
(d) $n+1,3$
29. In $\triangle \mathrm{PQR}, \angle \mathrm{R}=\frac{\pi}{2}$, If $\tan \left(\frac{\mathrm{P}}{2}\right)$ and $\tan \left(\frac{\mathrm{Q}}{2}\right)$ are the roots of the equation $a x^{2}+b x+c=0$, then which one of the following is correct?
(a) $a=b+c$
(b) $\mathrm{b}=\mathrm{c}+\mathrm{a}$
(c) $\mathrm{c}=\mathrm{a}+\mathrm{b}$
(d) $b=c$
30. If $\left|\mathrm{z}-\frac{4}{2}\right|=2$, then the maximum value of $|\mathrm{z}|$ is equal to
(a) $1+\sqrt{3}$
(b) $1+\sqrt{5}$
(c) $1-\sqrt{5}$
(d) $\sqrt{3}-1$
31. The angle of elevation of a stationary cloud from a point 25 m above a lake is 15° and the angle of depression of its image in the lake 45°. The height of the cloud above the lake level is
(a) 25 m
(b) $25 \sqrt{3} \mathrm{~m}$
(c) 50 m
(d) $50 \sqrt{3} \mathrm{~m}$
32. The value of
$\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is equal to
(a) -1
(b) 0
(c) 1
(d) 4
33. The value of $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to
(a) 4
(b) 2
(c) 1
(d) -4
34. Angle α is divided into two parts A and B such that $\mathrm{A}-\mathrm{B}=\mathrm{x}$ and $\tan \mathrm{A}: \tan \mathrm{B}=\mathrm{p}: \mathrm{q}$. The value $\sin x$ is equal to
(a) $\frac{(\mathrm{p}+\mathrm{q}) \sin \alpha}{\mathrm{p}-\mathrm{q}}$
(b) $\frac{p \sin \alpha}{p-q}$
(c) $\frac{p \sin \alpha}{p+q}$
(d) $\frac{(p-q) \sin \alpha}{p+q}$
35. The value of
$\sin ^{-1}\left(\frac{3}{5}\right)+\tan ^{-1}\left(\frac{1}{7}\right)$
is equal to
(a) 0
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$
36. The angles of elevation of the top of a tower from the top and foot of a pole are respectively 30° and 45°. If h_{T} is the height of the tower and h_{p} is the height of the pole, then which of the following are correct?

1. $\frac{2 h_{\mathrm{P}} \mathrm{h}_{\mathrm{T}}}{3+\sqrt{3}}=\mathrm{h}_{\mathrm{P}}^{2}$
2. $\frac{\mathrm{h}_{\mathrm{T}}-\mathrm{h}_{\mathrm{P}}}{\sqrt{3}+1}=\frac{\mathrm{h}_{\mathrm{P}}}{2}$
3. $\frac{2\left(\mathrm{~h}_{\mathrm{P}}+\mathrm{h}_{\mathrm{T}}\right)}{\mathrm{h}_{\mathrm{P}}}=4+\sqrt{3}$

Select the correct answer using the code given below.
(a) 1 and 3 only
(b) 2 and 3 only
(c) 1 and 2 only
(d) 1, 2 and 3
37. In a triangle $A B C, a-2 b+c=0$. The value of $\cot \left(\frac{A}{2}\right) \cot \left(\frac{C}{2}\right)$ is
(a) $\frac{9}{2}$
(b) 3
(c) $\frac{3}{2}$
(d) 1
38. $\sqrt{1+\sin \mathrm{A}}=-\left(\sin \frac{\mathrm{A}}{2}+\cos \frac{\mathrm{A}}{2}\right)$ is true if
(a) $\frac{3 \pi}{2}<\mathrm{A}<\frac{5 \pi}{2}$ only
(b) $\frac{\pi}{2}<$ A $<\frac{3 \pi}{2}$ only
(c) $\frac{3 \pi}{2}<\mathrm{A}<\frac{7 \pi}{2}$
(d) $0<$ A $<\frac{3 \pi}{2}$
39. In triangle $A B C$, if

$$
\frac{\sin ^{2} A+\sin ^{2} B+\sin ^{2} C}{\cos ^{2} A+\cos ^{2} B+\cos ^{2} C}=2
$$

Then the triangle is
(a) Right-angled
(b) Equilateral
(c) Isosceles
(d) Obtuse-angled
40. The principal value of $\sin ^{-1} x$ lies in the interval
(a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(c) $\left[0, \frac{\pi}{2}\right]$
(d) $[0, \pi]$
41. The points $(a, b),(0,0),(-a,-b)$ and $\left(a b, b^{2}\right)$ are
(a) The vertices of a parallelogram
(b) The vertices of a rectangle
(c) The vertices of a square
(d) Collinear
42. The length of the normal from origin to the plane $\mathrm{x}=2 \mathrm{y}-2 \mathrm{z}=9$ is equal to
(a) 2 units
(b) 3 units
(c) 4 units
(d) 5 units
43. If α, β and γ are the angles which the vector $\overrightarrow{\mathrm{OP}}$ (O being the origin) makes with positive direction of the coordinate axes, then which of the following are correct?

1. $\cos ^{2} \alpha+\cos ^{2} \beta=\sin ^{2} \gamma$
2. $\sin ^{2} \alpha+\sin ^{2} \beta=\cos ^{2} \gamma$
3. $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$

Select the correct answer using the code given below:
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2 and 3
44. The angle between the lines
$x+y-3=0$ and $x-y+3=0$ is α and the acute angle between the lines $x-\sqrt{3} y+$ $2 \sqrt{3}=0$ is β. Which one of the following is correct?
(a) $\alpha=\beta$
(b) $\alpha>\beta$
(c) $\alpha<\beta$
(d) $\alpha=2 \beta$
45. Let $\vec{\alpha}=\hat{\imath}+2 \hat{\jmath}-\hat{k}, \vec{\beta}=2 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ be three vectors. If $\vec{\alpha}$ and $\vec{\beta}$ are both perpendicular to the vector $\vec{\delta}$ and $\vec{\delta} \cdot \vec{\gamma}=10$, then what is the magnitude of $\vec{\delta}$?
(a) $\sqrt{3}$ units
(b) $2 \sqrt{3}$ units
(c) $\frac{\sqrt{3}}{2}$ unit
(d) $\frac{1}{\sqrt{3}}$ unit
46. If \hat{a} and \hat{b} are two unit vectors, then the vector $(\hat{a}+\hat{b}) \times(\hat{a} \times \hat{b})$ is parallel to
(a) $(\hat{a}-\hat{b})$
(b) $(\hat{a}+\hat{b})$
(c) $(2 \hat{a}-\hat{b})$
(d) $(2 \hat{a}+\hat{b})$
47. $\overrightarrow{\mathrm{F}}=\hat{\imath}+3 \hat{\jmath}+2 \hat{\mathrm{k}}$ acts on a particle to displace it from the point
$A(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})$ to the point $B(3 \hat{\imath}-\hat{\jmath}+5 \hat{k})$. The work done by the force will be
(a) 5 units
(b) 7 units
(c) 9 units
(d) 10 units
48. For any vector
$\vec{a}|\vec{a} \times \hat{x}|^{2}+|\vec{a} \times \hat{\jmath}|^{2}+|\vec{a} \times \hat{k}|^{2}$ is equal to
(a) $|\vec{a}|^{2}$
(b) $2|\vec{a}|^{2}$
(c) $3|\vec{a}|^{2}$
(d) $4|\vec{a}|^{2}$
49. A man running round a racecourse notes that the sum of the distances of two flag-posts from him is always 10 m and the distance between the flag-posts is 8 m . The area of the path he encloses is
(a) 18π square metres
(b) 15π square metres
(c) 12π square metres
(d) 8π square metres
50. The distance of the point $(1,3)$ from the line $2 x+3 y=6$, measured parallel to the line $4 x+$ $y=4$, is
(a) $\frac{5}{\sqrt{13}}$ units
(b) $\frac{3}{\sqrt{17}}$ units
(c) $\sqrt{17}$ units
(d) $\frac{\sqrt{17}}{2}$ units
51. If the vector $a \hat{\imath}+\hat{\jmath}+\hat{k}, \hat{\imath}+b \hat{\jmath}+\hat{k}$ and $\hat{\imath}+\hat{\jmath}=c \hat{k}(a, b, c \neq 1)$ are coplanar, then the value of
$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$
is equal to
(a) 0
(b) 1
(c) $a+b+c$
(d) $a b c$
52. The point of intersection of the line joining the points $(-3,4,-8)$ and $(5,-6,4)$ with the XY plane is
(a) $\left(\frac{7}{3},-\frac{8}{3}, 0\right)$
(b) $\left(-\frac{7}{3},-\frac{8}{3}, 0\right)$
(c) $\left(-\frac{7}{3}, \frac{8}{3}, 0\right)$
(d) $\left(\frac{7}{3}, \frac{8}{3}, 0\right)$
53. If the angle between the lines whose direction ratios are $(2,-1,2)$ and $(x, 3,5)$ is $\frac{\pi}{4}$, then the smaller value of x is
(a) 52
(b) 4
(c) 2
(d) 1
54. The position of the point $(1,2)$ relative to the ellipse $2 x^{2}+7 y^{2}=20$ is
(a) Outside the ellipse
(b) Inside the ellipse but not at the focus
(c) On the ellipse
(d) At the focus
55. The equation of a straight line which cuts off an intercept of 5 units on negative direction of y axis and makes an angle 120° with positive direction of x-axis is
(a) $y+\sqrt{3 x}+5=0$
(b) $y-\sqrt{3 x}+5=0$
(c) $y+\sqrt{3 x}-5=0$
(d) $y-\sqrt{3 x}-5=0$
56. The equation of the line passing through the point $(2,3)$ and the point of intersection of lines $2 \mathrm{x}-3 \mathrm{y}+7=0$ and $7 \mathrm{x}+4 \mathrm{y}+2=0$ is
(a) $21+46 y-180=0$
(b) $21 \mathrm{x}-46 \mathrm{y}+96=0$
(c) $46 x+21 y-155=0$
(d) $46 x-21 y-29=0$
(d) $3 x+4 y+5 z+8=0$
57. The equation of the ellipse whose centre is at origin, major axis is along x -axis with eccentricity $\frac{3}{4}$ and latus rectum 4 units is
(a) $\frac{x^{2}}{1024}+\frac{7 y^{2}}{64}=1$
(b) $\frac{49 x^{2}}{1024}+\frac{7 y^{2}}{64}=1$
(c) $\frac{7 x^{2}}{1024}+\frac{49 y^{2}}{64}=1$
(d) $\frac{x^{2}}{1024}+\frac{y^{2}}{64}=1$
58. The equation of the circle which passes through the points $(1,0),(0,6)$, and $(3,4)$ is
(a) $4 x^{2}+4 y^{2}+142 x+47 y+140=0$
(b) $4 x^{2}+4 y^{2}-142 x+47 y+138=0$
(c) $4 x^{2}+4 y^{2}-142 x+47 y+138=0$
(d) $4 x^{2}+4 y^{2}+150 x-49 y+138=0$
59. A variable plane passes through a fixed point (a, b, c) and cuts the axes in A, B, and C respectively. The locus of the centre of the sphere $O A B C, O$ being the origin is
(a) $\frac{x}{2}+\frac{y}{b}+\frac{z}{c}=1$
(b) $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$
(c) $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$
(d) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2$
60. The equation of the plane passing through the line of intersection of the planes $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$, $2 x+3 y+4 z=7$ and perpendicular to the plane
$x-5 y+3 z=5$ is given by
(a) $x+2 y+3 z-6=0$
(b) $x+2 y+3 z+6=0$
(c) $3 x+4 y+5 z-8=0$
61. The inverse of the function $y=5^{\ln x}$ is
(a) $x=y^{\frac{1}{\ln 5}}, \quad y>0$
(b) $x=y^{\ln 5}, y>0$
(c) $x=y^{\frac{1}{\ln 5}}, y<0$
(d) $x=5 \ln y, y>0$
62. A function is defined as follows:
$f(x)=\left\{\begin{array}{rr}-\frac{x}{\sqrt{x^{2}}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
Which one of the following is correct in respect of the above function?
(a) $f(x)$ is continuous at $x=0$ but not differentiable at $x=0$
(b) $f(x)$ is continuous as well as differentiable at $x=0$
(c) $f(x)$ is discontinuous at $x=0$
(d) None of the above
63. If $y=(\cos x)^{(\cos x)^{\cos x}}$, then $\frac{d y}{d x}$ is equal to
(a) $-\frac{y^{2} \tan x}{1-y \ln (\cos x)}$
(b) $\frac{y^{2} \tan x}{1+y \ln (\cos x)}$
(c) $\frac{y^{2} \tan x}{1-y \ln (\sin x)}$
(d) $\frac{y^{2} \tan x}{1+y \ln (\sin x)}$
64. Consider the following:

1. $x+x^{2}$ is continuous at $x=0$
2. $\mathrm{x}+\cos \frac{1}{\mathrm{x}}$ is discontinuous at $\mathrm{x}=0$
3. $x^{2}+\cos \frac{1}{x}$ is continuous at $x=0$

Which of the following are correct?
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1,2 and 3
65. Consider the following statements:

1. $\frac{d y}{d x}$ at a point on the curve gives slope of the tangent at that point.
2. If $a(t)$ denotes acceleration of a particle, then
$\int a(t) d t+c$
gives velocity of the particle.
3. If $s(t)$ gives displacement of a particle at time t, then $\frac{d s}{d t}$ gives its acceleration at that instant.
Which of the above statements is/are correct?
(a) 1 and 2 only
(b) 2 only
(c) 1 only
(d) 1, 2 and 3
4. If $y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)$, then $\frac{d y}{d x}$ is equal to
(a) 0
(b) 1
(c) $\frac{x-1}{x+1}$
(d) $\frac{x+1}{x-1}$
5. What is
$\int \tan ^{-1}(\sec x+\tan x) d x$ equal to?
(a) $\frac{\pi x}{4}+\frac{x^{2}}{4}+c$
(b) $\frac{\pi x}{2}+\frac{x^{2}}{4}+c$
(c) $\frac{\pi x}{4}+\frac{\pi x^{2}}{4}+c$
(d) $\frac{\pi x}{4}+\frac{x^{2}}{4}+c$
6. A function defined by $(0, \infty)$ by
$f(x)=\left\{\begin{array}{ccc}1-x^{2} & \text { for } & 0<x \leq 1 \\ \ln x & \text { for } & 1<x \leq 2 \\ \ln 2-1+0.5 x & \text { for } & 2<x<\infty\end{array}\right.$
Which one of the following is correct in respect of the derivative of the function, i.e., $f^{\prime}(x)$?
(a) $\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}$ for $0<\mathrm{x} \leq 1$
(b) $\mathrm{f}^{\prime}(\mathrm{x})=-2 \mathrm{x}$ for $0<\mathrm{x} \leq 1$
(c) $\mathrm{f}^{\prime}(\mathrm{x})=-2 \mathrm{x}$ for $0<\mathrm{x}<1$
(d) $\mathrm{f}^{\prime}(\mathrm{x})=0$ for $0<\mathrm{x}<\infty$
7. Which one of the following is correct in respect of the function

$$
f(x)=x(x-1)(x+1) ?
$$

(a) The local maximum value is larger than local minimum value.
(b) The local maximum value is smaller than local minimum value.
(c) The function has no local maximum.
(d) The function has no local minimum.
70. Consider the following statements:

1. Derivative of $f(x)$ may not exist at some point.
2. Derivative of $f(x)$ may exist finitely at some point.
3. Derivative of $f(x)$ may be infinite (geometrically) at some point.
Which of the above statements are correct?
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2 and 3
4. The maximum value of $\frac{\ln x}{x}$ is
(a) e
(b) $\frac{1}{e}$
(c) $\frac{2}{e}$
(d) 1
5. The function $f(x)=|x|=|x|-x^{3}$ is
(a) Odd
(b) Even
(c) Both even and odd
(d) Neither even nor odd
6. If
$l_{1}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\sin \mathrm{x}}\right)$
$l_{2}=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{e}^{\sin (\mathrm{x}+\mathrm{h})}-\mathrm{e}^{\sin \mathrm{x}}}{\mathrm{h}}$
$l_{3}=\int \mathrm{e}^{\sin \mathrm{x}} \cos \mathrm{xdx}$
Then which one of the following is correct?
(a) $l_{1} \neq l_{2}$
(b) $\frac{\mathrm{d}}{\mathrm{dx}}\left(l_{3}\right)=l_{2}$
(c) $\int l_{3} \mathrm{dx}=l_{2}$
(d) $l_{2}=l_{3}$
7. The general solution of
$\frac{d y}{d x}=\frac{a x+h}{b y+k}$
represents a circle only when
(a) $a=b=0$
(b) $a=-b \neq 0$
(c) $\mathrm{a}=\mathrm{b} \neq 0, \mathrm{~h}=\mathrm{k}$
(d) $\mathrm{a}=\mathrm{b} \neq 0$
8. if
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x}{x}=l$
And
$\lim _{x \rightarrow \infty} \frac{\cos x}{x}=m$
Then which one of the following is correct?
(a) $l=1, \mathrm{~m}=1$
(b) $l=\frac{2}{\pi}, \mathrm{~m}=\infty$
(c) $l=\frac{2}{\pi}, \mathrm{~m}=0$
(d) $l=1, \mathrm{~m}=\infty$
9. The area bounded by the curve $|x|+|y|=1$ is
(a) 1 square unit
(b) $2 \sqrt{2}$ square units
(c) 2 square units
(d) $2 \sqrt{3}$ square units
10. If x is any real number, then $\frac{x^{2}}{1+x^{4}}$ belongs to which one of the following intervals?
(a) $(0,1)$
(b) $\left(0, \frac{1}{2}\right]$
(c) $\left(0, \frac{1}{2}\right]$
(d) $[0,1]$
11. The left-hand derivative of

$$
\mathrm{f}(\mathrm{x})=[\mathrm{x}] \sin (\pi \mathrm{x}) \text { at } \mathrm{x}=\mathrm{k}
$$

where k is an integer and $[x]$ is the greatest integer function, is
(a) $(-1)^{\mathrm{k}}(\mathrm{k}-1) \pi$
(b) $(-1)^{\mathrm{k}-1}(\mathrm{k}-1) \pi$
(c) $(-1)^{k} \mathrm{k} \pi$
(d) $(-1)^{k-1} \mathrm{k} \pi$
80. If $f(x)=\frac{x}{2}-1$, then on the interval $[0, \pi]$ which one of the following is correct?
(a) $\tan [f(x)]$, where [.] is the greatest integer function, and $\frac{1}{f(x)}$ are both continuous
(b) $\tan [f(x)]$, where [.] is the greatest integer function, and $\mathrm{f}^{-1}(\mathrm{x})$ are both continuous
(c) $\tan [f(x)]$, where [.] is the greatest integer function, and $\frac{1}{f(x)}$ are both discontinuous
(d) $\tan [\mathrm{f}(\mathrm{x})]$, where [.] is the greatest integer function, is discontinuous but $\frac{1}{f(x)}$ is continuous
76. What is $\int_{0}^{2 \pi} \sqrt{1+\sin \frac{x}{2} d x}$ equal to?
(a) 8
(b) 4
(c) 2
(d) 0
81. The order and degree of the differential equation
$\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=\rho^{2}\left[\frac{d^{2} y}{d x^{2}}\right]^{2}$
are respectively
(a) 3 and 2
(b) 2 and 2
(c) 2 and 3
(d) 1 and 3
(b) Differentiable at $\mathrm{x}=0$
(c) Not continuous at $x=0$

(a)

(b)

(c)
(d) None of the above
82. If
$y=\cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ then $\frac{d y}{d x}$ is equal to
(a) $-\frac{2}{1+\mathrm{x}^{2}}$ for all $|\mathrm{x}|<1$
(b) $-\frac{2}{1+\mathrm{x}^{2}}$ for all $|\mathrm{x}|>1$
(c) $\frac{2}{1+\mathrm{x}^{2}}$ for all $|\mathrm{x}|<1$
(d) None of the above.
83. The set of all points, where the function $\mathrm{f}(\mathrm{x})=\sqrt{1-\mathrm{e}^{-\mathrm{x}^{2}}}$ is differentiable, is
(a) $(0, \infty)$
(b) $(-\infty, 0) \cup(0, \infty)$
(c) $(-\infty, \infty)$
(d) $(-1, \infty)$
84. Match List-I with List-II and select the correct answer using the code given below the lists.

List -I (Function		List- II (Maximum value)	
A.	$\sin x+\cos x$	1.	$\sqrt{10}$
B.	$3 \sin x+4 \cos x$	2.	$\sqrt{2}$
C.	$2 \sin x+\cos x$	3.	5
D.	$\sin x+3 \cos x$	4.	$\sqrt{5}$

Code:

(a) (A-2), (B-3), (C-1), (D-4)
(b) (A-2), (B-3), (C-4), (D-1)
(c) (A-3), (B-2), (C-1), (D-4)
(d) (A-3), (B-2), (C-4), (D-1)
85. If $f(x)=x(\sqrt{x}-\sqrt{x+1})$, then $f(x)$ is
(a) Continuous but not differentiable at $x=0$
86. Which one of the following graphs represents the function $f(x)=\frac{x}{x}, x \neq 0$
87. Let $\mathrm{f}(\mathrm{n})=\left[\frac{1}{4}+\frac{\mathrm{n}}{1000}\right]$, where $[\mathrm{x}]$ denotes the integral part of x. then the value of $\sum_{n=1}^{1000} f(n)$ is
(a) 251
(b) 250
(c) 1
(d) 0
88. $\int(\ln x)^{-1} d x-\int(\ln x)^{-2} d x$ is equal to
(a) $x(\ln x)^{-1}+c$
(b) $x(\ln x)^{-2}+c$
(c) $x(\ln x)+c$
(d) $x(\ln x)^{2}+c$
89. A cylindrical jar without a lid has to be constructed using a given surface area of a metal sheet. If the capacity of the jar is to be maximum then the diameter of the jar must be k times the height of the jar. The value of k is
(a) 1
(b) 2
(c) 3
(d) 4
90. The value of $\int_{0}^{\frac{\pi}{4}} \sqrt{\tan x} d x+\int_{0}^{\frac{\pi}{4}} \sqrt{\cot x} d x$ is equal to
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{2 \sqrt{2}}$
(d) $\frac{\pi}{2}$
91. Let g be the greatest integer function. Then the function $\mathrm{f}(\mathrm{x})=(\mathrm{g}(\mathrm{x}))^{2}-\mathrm{g}\left(\mathrm{x}^{2}\right)$ is
discontinuous at
(a) All integers
(b) All integers except 0 and 1
(c) All integers except 1
92. The differential equation of minimum order by eliminating the arbitrary constants A and C in the equation $\mathrm{y}=\mathrm{A}[\sin (\mathrm{x}+\mathrm{C})+\cos (\mathrm{x}+\mathrm{C})]$ is
(a) $y^{\prime \prime}+(\sin x+\cos y) y^{\prime}=1$
(b) $y^{\prime \prime}=(\sin x+\cos x) y^{\prime}$
(c) $y^{\prime \prime}=\left(y^{\prime}\right)^{2}+\sin x \cos x$
(d) $y^{\prime \prime}+y=0$
93. Consider the following statements:

Statement I: $\mathrm{x}>\sin \mathrm{x}$ for all $\mathrm{x}>0$
Statement II: $\mathrm{f}(\mathrm{x})=\mathrm{x}-\sin \mathrm{x}$ is an increasing function for $\mathrm{x}>0$
Which one of the following is correct in respect of the above statements?
(a) Both Statement I and Statement II are true and Statement II is the correct explanation of Statement I.
(b) Both Statement I and II are true and Statement II is not the correct explanation of Statement I.
(c) Statement I is true but Statement II is false.
(d) Statement I is false but Statement II is true.
94. The solution of the differential equation $\frac{d y}{d x}=\frac{y \phi(x)-y^{2}}{\phi(x)}$
is
(a) $\mathrm{y}=\frac{\mathrm{x}}{\phi(\mathrm{x})+\mathrm{c}}$
(b) $y=\frac{\phi(x)}{x c}+c$
(c) $y=\frac{\phi(x)+c}{x}$
(d) $y=\frac{\phi(x)}{x+c}$
95. If
$\mathrm{f}(\mathrm{x})=\frac{4 \mathrm{x}+\mathrm{x}^{2}}{1+\mathrm{x}^{3}}$ and $\mathrm{g}(\mathrm{x})=\ln \left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)$
then what is the value of $f \circ g\left(\frac{e-1}{e+1}\right)$ equal to?
(a) 2
(b) 1
(c) 0
(d) $\frac{1}{2}$
96. The value of the determinant $\left|\begin{array}{lll}1-\alpha & \alpha-\alpha^{2} & \alpha^{2} \\ 1-\beta & \beta-\beta^{2} & \beta^{2} \\ 1-\gamma & \gamma-\gamma^{2} & \gamma^{2}\end{array}\right|$ is equal to
(a) $(\alpha-\beta)(\beta-\gamma)(\alpha-\gamma)$
(b) $(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$
(c) $(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)$
(d) 0
97. The adjoint of the matrix $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 3 & 1\end{array}\right]$ is
(a) $\left[\begin{array}{ccc}-1 & 6 & 2 \\ -2 & 1 & -4 \\ 6 & 3 & 1\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 6 & -2 \\ -2 & 1 & 4 \\ 6 & -3 & 1\end{array}\right]$
(c) $\left[\begin{array}{ccc}6 & 1 & 2 \\ 4 & -1 & 2 \\ 6 & 3 & -1\end{array}\right]$
(d) $\left[\begin{array}{ccc}-6 & 2 & 1 \\ 4 & -2 & 1 \\ 3 & 1 & -6\end{array}\right]$
98. If $\mathrm{A}=\left(\begin{array}{ll}-2 & 2 \\ -2 & 2\end{array}\right)$, then which one of the following is correct?
(a) $\mathrm{A}^{2}=-2 \mathrm{~A}$
(b) $\mathrm{A}^{2}=-4 \mathrm{~A}$
(c) $\mathrm{A}^{2}=-3 \mathrm{~A}$
(d) $\mathrm{A}^{2}=4 \mathrm{~A}$
99. Geometrically $\operatorname{Re}\left(z^{2}-i\right)=2$, where $i=\sqrt{-1}$ and $R e$ is the real part, represents
(a) Circle
(b) Ellipse
(c) Rectangular hyperbola
(d) Parabola
100. If $\mathrm{p}+\mathrm{q}+\mathrm{r}=\mathrm{a}+\mathrm{b}+\mathrm{c}=0$, then the determinant $\left|\begin{array}{lll}\mathrm{pa} & \mathrm{qb} & \mathrm{rc} \\ \mathrm{qc} & \mathrm{ra} & \mathrm{pb} \\ \mathrm{rb} & \mathrm{pc} & \mathrm{qa}\end{array}\right|$ equals
(a) 0
(b) $\mathrm{pa}+\mathrm{qb}+\mathrm{rc}$
(c) 1
(d) $\mathrm{pq}+\mathrm{qb}+\mathrm{rc}+\mathrm{a}+\mathrm{b}+\mathrm{c}$
101. A committee of two persons is selected from two men and two women. The probability that the committee will have exactly one woman is
(a) $\frac{1}{6}$
(b) $\frac{2}{3}$
(c) $\frac{4}{9}$
(d) $\frac{5}{9}$
102. Let a dice be loaded in such a way that even faces are twice likely to occur as the odd faces. What is the probability that a prime number will show up when the dice is tossed.
(a) $\frac{1}{3}$
(b) $\frac{2}{3}$
(c) $\frac{4}{9}$
(d) $\frac{5}{9}$
103. Let the sample space consist of nonnegative integers up to 50 , denote the numbers which are multipliers of 3 and Y denote the odd numbers. Which of the following is/are correct?

1. $\mathrm{P}(\mathrm{X})=\frac{8}{25}$
2. $\mathrm{P}(\mathrm{Y})=\frac{1}{2}$

Select the correct answer using the code given below.
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
104. For two events A and B, let $P(A)=\frac{1}{2}$,
$P(A \cup B)=\frac{2}{3}$ and $P(A \cap B)=\frac{1}{6}$. What
$P(\bar{A} \cap B)$ equal to?
(a) $\frac{1}{6}$
(b) $\frac{1}{4}$
(c) $\frac{1}{3}$
(d) $\frac{1}{2}$
105. Consider the following statements:

1. Coefficient of variation depends on the unit of measurement of the variable.
2. Range is a measure of dispersion
3. Mean deviation is least when measured about median.
Which of the above statements are correct?
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2 and 3
4. Given that the arithmetic mean and standard deviation of a sample of 15 observations are 24 and 0 respectively. Then which one of the following is the arithmetic mean of the smallest five observations in the data?
(a) 0
(b) 8
(c) 16
(d) 24
5. Which one of the following can be considered as appropriate pair of values of regression coefficient of y on x and regression of x on y ?
(a) $(1,1)$
(b) $(-1,1)$
(c) $\left(-\frac{1}{2}, 2\right)$
(d) $\left(\frac{1}{3}, \frac{10}{3}\right)$
6. Let A and B be two events with
$P(A)=\frac{1}{3}, P(B)=\frac{1}{6}$ and $P(A \cap B)=\frac{1}{12}$. What is $P(B \mid \bar{A})$ equal to?
(a) $\frac{1}{5}$
(b) $\frac{1}{7}$
(c) $\frac{1}{8}$
(d) $\frac{1}{10}$
7. In a binomial distribution, the mean is $\frac{2}{3}$ and the variance is $\frac{5}{9}$. What is the probability that $x=2$?
(a) $\frac{5}{36}$
(b) $\frac{25}{36}$
(c) $\frac{25}{216}$
(d) $\frac{25}{54}$
8. The probability that a ship safely reaches a port is $\frac{1}{3}$. The probability that out of 5 ships, at least 4 ships would arrive safely is
(a) $\frac{1}{243}$
(b) $\frac{10}{243}$
(c) $\frac{11}{243}$
(d) $\frac{13}{243}$
9. What is the probability that at least two persons out of a group of three persons were born in the same month (disregard year)?
(a) $\frac{33}{144}$
(b) $\frac{17}{72}$
(c) $\frac{1}{144}$
(d) $\frac{2}{9}$
10. It is given that $\bar{X}=10, \bar{Y}=90, \sigma_{x}=3$ $\sigma_{\mathrm{Y}}=12$ and $\mathrm{r}_{\mathrm{xy}}=0.8$. The regression equation of X on Y is
(a) $\mathrm{Y}=3.2 \mathrm{X}+58$
(b) $\mathrm{X}=3.2 \mathrm{Y}+58$
(c) $\mathrm{X}=-8+0.2 \mathrm{Y}$
(d) $\mathrm{Y}=-8+0.2 \mathrm{X}$
11. If $\mathrm{P}(\mathrm{B})=\frac{3}{4}, \mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \overline{\mathrm{C}})=\frac{1}{3}$ and
$P(\bar{A} \cap B \cap \bar{C})=\frac{1}{3}$, then what is $P(B \cap C)$ equal to?
(a) $\frac{1}{12}$
(b) $\frac{3}{4}$
(c) $\frac{1}{15}$
(d) $\frac{1}{9}$
12. The following table gives the monthly expenditure of two families:

	Expenditures (in Rs.)	
Items	Family A	Family B
Food	3,500	2,700

Clothing	500	800
Rent	1,500	1,000
Education	2,000	1,800
Miscellaneous	2,500	1,800

In constructing a pie diagram to the above data, the radii of the circles are to be chosen by which one of the following ratios?
(a) $1: 1$
(b) $10: 9$
(c) 100:91
(d) $5: 4$
115. If a variable takes values $0,1,2,3, \ldots, n$ with frequencies $1, \mathrm{C}(\mathrm{n}, 1), \mathrm{C}(\mathrm{n}, 2), \mathrm{C}(\mathrm{n}, 3), \ldots$, $C(n, n)$ respectively, then the arithmetic mean is
(a) $2 n$
(b) $n+1$
(c) n
(d) $\frac{n}{2}$
116. In a multiple-choice test, an examinee either knows the correct answer with probability p, or guesses with probability 1 - p. The probability of answering a question correctly is $\frac{1}{\mathrm{~m}}$, if he or she merely guesses. If the examinee answers a question correctly, the probability that he or she really knows the answer is
(a) $\frac{\mathrm{mp}}{1+\mathrm{mp}}$
(b) $\frac{\mathrm{mp}}{1+(\mathrm{m}-1) \mathrm{p}}$
(c) $\frac{(\mathrm{m}-1) \mathrm{p}}{1+(\mathrm{m}-1) \mathrm{p}}$
(d) $\frac{(m-1) p}{1+m p}$
117. If x_{1} and x_{2} are positive quantities, then the condition for the difference between the arithmetic mean and the geometric mean to be greater than 1 is
(a) $x_{1}+x_{2}>2 \sqrt{x_{1} x_{2}}$
(b) $\sqrt{\mathrm{x}_{1}}+\sqrt{\mathrm{x}_{2}}>\sqrt{2}$
(c) $\left|\sqrt{\mathrm{x}_{1}}+\sqrt{\mathrm{x}_{2}}\right|>\sqrt{2}$
(d) $\mathrm{x}_{1}+\mathrm{x}_{2}<2\left(\sqrt{\mathrm{x}_{1} \mathrm{x}_{2}}+1\right)$
118. Consider the following statements:

1. Variance is unaffected by change of origin and change of scale.
2. Coefficient of variance is independent of the unit of observations.
Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
3.

are given. Three of these sticks are selected at random. What is the probability that the selected sticks can form a triangle?
(a) 0.5
(b) 0.4
(c) 0.3
(d) 0
120. The coefficient of correlation when coefficients of regression are 0.2 and 1.8 is
(a) 0.36
(b) 0.2
(c) 0.6
(d) 0.9

1. $x+\log _{10}\left(1+2^{x}\right)=x \log _{10} 5+\log _{10} 6$
$\Rightarrow \mathrm{x}\left(1-\log _{10} 5\right)=\log _{10} 6-\log _{10}\left(1+2^{x}\right)$
$\Rightarrow \mathrm{x}\left(\log _{10} 10-\log _{10} 5\right)=\log _{10}\left(\frac{6}{1+2^{\mathrm{x}}}\right)$
$\Rightarrow x \log _{10} 2=\log _{10}\left(\frac{6}{1+2^{x}}\right) \Rightarrow x=1$
2. $(101110)_{2}=(46)_{10}$ and $(110)_{2}=(6)_{10}$

Quotient $=(7)_{10}=(111)_{2}$
Remainder $=(4)_{10}=(100)_{2}$
3. For $A B$ and $B A$ to be exist
$x+5=y$ and $11-y=x$
Solving these, $x=8$ and $y=3$
4. $\mathrm{S}_{\mathrm{n}}=\mathrm{nP}+\frac{\mathrm{n}(\mathrm{n}-1) \mathrm{Q}}{2}$
\therefore common difference (d) $=2 \times \frac{\mathrm{Q}}{2}=\mathrm{Q}$
5. Sum of coefficients
$=\mathrm{q}-\mathrm{r}+\mathrm{r}-\mathrm{p}+\mathrm{p}-\mathrm{q}=0 \Rightarrow 1$ is a root.
Another root $=\frac{\mathrm{p}-\mathrm{q}}{\mathrm{q}-\mathrm{r}}$
6. $E-(E-(E-(E-(E-A))))$
$=E-\left(E-\left(E-\left(E-A^{\prime}\right)\right)\right)$
$=E-(E-(E-A))$
$=\mathrm{E}-\left(\mathrm{E}-\mathrm{A}^{\prime}\right)=\mathrm{E}-\mathrm{A}=\mathrm{A}$
$=(B \cup C)^{\prime}=B^{\prime} \cap C^{\prime}$
7. Here, $\mathrm{C} \subset \mathrm{A}$ and $\mathrm{C} \subset \mathrm{B}$
$C=A \cap B=A \cap(B \cap C)$
$=A \cap C=C$
8. α and β are roots of $x^{2}+x+1=0$
$\Rightarrow \alpha=\omega, \beta=\omega^{2}$
$\left[\begin{array}{ll}1 & \beta \\ \alpha & \alpha\end{array}\right]\left[\begin{array}{ll}\alpha & \beta \\ 1 & \beta\end{array}\right]=\left[\begin{array}{cc}\alpha+\beta & \beta+\beta^{2} \\ \alpha^{2}+\alpha & \alpha \beta+\alpha \beta\end{array}\right]$
$=\left[\begin{array}{cc}\omega+\omega^{2} & \omega^{2}+\omega \\ \omega^{2}+\omega & 2 \omega^{2}\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ -1 & 2\end{array}\right]$
9. All are true.
10. " T " is repeated twice. So, Number of permutations
$=\frac{(11)!}{2!}=19958400$
11. $\mathrm{k}=\frac{1}{2 \mathrm{i}}=\frac{-\mathrm{i}}{2}$

$$
\begin{aligned}
& \mathrm{kA}=\left[\begin{array}{cc}
(4 \mathrm{i}-6)\left(\frac{-1}{2}\right) & 10 \mathrm{i}\left(\frac{-\mathrm{i}}{2}\right) \\
14 \mathrm{i}\left(\frac{-\mathrm{i}}{2}\right) & \left(6+4 \mathrm{i}\left(\frac{-\mathrm{i}}{2}\right)\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
2+3 \mathrm{i} & 5 \\
7 & 2-3 \mathrm{i}
\end{array}\right]
\end{aligned}
$$

12. $|x-3|^{2}+|x-3|-2=0$

Let $|x-3|=y$
$\Rightarrow \mathrm{y}=\frac{-1 \pm \sqrt{1+8}}{2}=\frac{-1 \pm 3}{2}$
$\Rightarrow \mathrm{y}=1$ or -2 (-2 Rejected as y is +ve)
$\Rightarrow y=1$
$\Rightarrow|x-3|=1 \Rightarrow \mathrm{x}-3=1$ or $\mathrm{x}-3=1$
$\Rightarrow x=4$ or 2
\therefore Sum of roots $=6$
13. $x^{2}-4 x-\log _{3}^{P}=0$
$\mathrm{D}=16+4 \log _{3}^{\mathrm{P}} \geq 0$
$\Rightarrow \log _{3}^{\mathrm{P}} \geq \frac{-16}{4} \geq-4$
$\Rightarrow \mathrm{P} \geq 3^{-4} \geq \frac{1}{81}$
\therefore Minimum value $=\frac{1}{81}$
14. $\operatorname{Adj} \mathrm{A}^{\mathrm{T}}=(\operatorname{adj} \mathrm{A})^{\mathrm{T}} \Rightarrow \operatorname{Adj} \mathrm{A}^{\mathrm{T}}-(\operatorname{adj} \mathrm{A})^{\mathrm{T}}=0$
15. $6^{\frac{1}{2}} \times 6^{\frac{1}{4}} \times 6^{\frac{1}{8}} \times 6^{\frac{1}{16}}$. \qquad ∞
$6^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots \infty}=6^{\frac{\frac{1}{2}}{1-\frac{1}{2}}}=6^{1}=6$
16. $\left|\begin{array}{ll}\cos ^{2} \frac{\theta}{2} & \sin ^{2} \frac{\theta}{2} \\ \sin ^{2} \frac{\theta}{2} & \cos ^{2} \frac{\theta}{2}\end{array}\right|=\left(\cos ^{4} \frac{\theta}{2}-\sin ^{4} \frac{\theta}{2}\right)$
$=\left(\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}\right)\left(\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}\right)=\cos \theta$
17. $(x+a)^{100}+(x-a)^{100}$

Number of terms $=101-50=51$
18. $\ln (1+x)^{50}$
$\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{5}+\cdots=\frac{1}{2} \times 2^{50}=2^{49}$
$\left[\because C_{0}+C_{1}+C_{2}+\cdots C_{n}=2^{n}\right.$
19. $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right] \mathrm{a}=\operatorname{diag}[\mathrm{a}, \mathrm{b}, \mathrm{c}]$
$\mathrm{A}^{-1}=\operatorname{diag}^{-1}[\mathrm{a}, \mathrm{b}, \mathrm{c}]=\frac{1}{|\mathrm{~A}|} \operatorname{diag}\left[\mathrm{a}^{-1}, \mathrm{~b}^{-1}, \mathrm{c}^{-1}\right]$
$=\frac{1}{\mathrm{abc}}\left[\begin{array}{ccc}\mathrm{a}^{-1} & 0 & 0 \\ 0 & \mathrm{~b}^{-1} & 0 \\ 0 & 0 & \mathrm{c}^{-1}\end{array}\right]$
20. Let us assume that total minutes $=x$

For first nine minutes $=150 \times 9$
Let the remaining minutes $=y=x-9$
Now,
$(150 \times 9)+\frac{y}{2}[2 \times 150+(y-1)(-2)]=4500$
$\frac{y}{2}(302-2 y)=3150 \Rightarrow y^{2}-151 y+3150=0$
$\Rightarrow(y-126)(y-25)=0 \Rightarrow y=25$ or 126
(Rejected)
So, $x=y+9=25+9=34$ minutes
21. $\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^{\mathrm{n}}=\mathrm{i}^{\mathrm{n}}=1 \Rightarrow \mathrm{n}=4$
22. $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d}) \Leftrightarrow \mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{c}$
$a+a=a+a$
$\Rightarrow(\mathrm{a}, \mathrm{a}) \mathrm{R}(\mathrm{a}, \mathrm{a}) \Rightarrow \mathrm{R}$ is reflexive.
Next, Let $(a, b) R(c, d) \Rightarrow a+b=b+c$
$\Rightarrow \mathrm{c}+\mathrm{b}=\mathrm{d}+\mathrm{a} \Rightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b})$
$\Rightarrow R$ is symmetric.
Next, (a, b) R (c, d) and (c, d) R (e, f)
$\Rightarrow \mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{c}$ and $\mathrm{c}+\mathrm{f}=\mathrm{d}+\mathrm{e}$
$\Rightarrow a+d+c+f=b+c+d+e$
$\Rightarrow \mathrm{a}+\mathrm{f}=\mathrm{b}+\mathrm{e} \Rightarrow(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{e}, \mathrm{f})$
$\Rightarrow R$ is transitive $\Rightarrow R$ is an equivalence relation.
23. $\mathrm{y}=\frac{\mathrm{x}}{1-\mathrm{x}} \Rightarrow \mathrm{x}=\frac{\mathrm{y}}{1+\mathrm{y}}$
24. $3 \mathrm{x}^{2}+2 \mathrm{x}+1=0 \Rightarrow \alpha+\beta=-\frac{2}{3}, \alpha \beta=\frac{1}{3}$
$\mathrm{S}=\alpha+\beta+\frac{1}{\alpha}+\frac{1}{\beta}=-\frac{2}{3}-2=\frac{-8}{3}$
$P=\left(\alpha+\beta^{-1}\right)\left(\beta+\alpha^{-1}\right)=\alpha \beta+2+\frac{1}{\alpha \beta}=\frac{16}{3}$
Required equation is $\mathrm{x}^{2}-\mathrm{Sx}+\mathrm{P}=0$
$x^{2}+\frac{8}{3} x+\frac{16}{3}=0 \Rightarrow 3 x^{2}+8 x+16=0$
25. $\log _{e}+\frac{1}{2} \log _{e} 3+\frac{1}{4} \log _{e} 3+\cdots$
$=\left(\log _{e} 3\right)\left[1+\frac{1}{2}+\frac{1}{4}+\cdots \infty\right]=\left(\log _{e} 3\right) \frac{1}{1-\frac{1}{2}}$
$=2 \log _{\mathrm{e}} 3=\log _{e} 9$
26. $\frac{8!}{4!} \frac{8}{6!}=8!\times 8!\times \frac{10 \times 9 \times 8 \times 7}{4!}=210 \times(8!)^{2}$
27. $\left|\begin{array}{lll}\mathrm{k} & 1 & 1 \\ 1 & \mathrm{k} & 1 \\ 1 & 1 & \mathrm{k}\end{array}\right|=0$
$\Rightarrow \mathrm{k}\left(\mathrm{k}^{2}-1\right)-(\mathrm{k}-1)+(1-\mathrm{k})=0$
$\Rightarrow \mathrm{k}(\mathrm{k}+1)-1-1]=0 \Rightarrow \mathrm{k}^{2}+\mathrm{k}-2=0$
$\Rightarrow 1,-2$
For $\mathrm{k}=1$, first two equations will become same.
$\Rightarrow \mathrm{k}=-2$
28. $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{ab}}{1-\mathrm{r}}+\frac{\mathrm{dbr}\left(1-\mathrm{r}^{\mathrm{n}-1}\right)}{(1-\mathrm{r})^{2}}$
$1.3+2.3^{2}+\cdots \mathrm{n} .3^{\mathrm{n}}$
$=\frac{\left\{(2 \mathrm{n}-1) 3^{\mathrm{n}+1}+3\right\}}{4}$
$=\frac{(2 \mathrm{n}-1) 3^{\mathrm{a}}+\mathrm{b}}{4}=\frac{(2 \mathrm{n}-1) 3^{\mathrm{n}+1}+3}{4}$
$\mathrm{a}=\mathrm{n}+1, \mathrm{~b}=3$
29. $\frac{\mathrm{P}}{2}+\frac{\mathrm{Q}}{2}=45^{\circ}$

$$
\begin{aligned}
& \tan \left(\frac{P}{2}+\frac{\mathrm{Q}}{2}\right)=\frac{\tan \frac{\mathrm{P}}{2}+\frac{\mathrm{Q}}{2}}{1-\tan \frac{P}{2} \tan \frac{\mathrm{Q}}{2}}=1 \\
& \frac{-\mathrm{b}}{\mathrm{a}}=1-\frac{\mathrm{c}}{\mathrm{a}}=\frac{\mathrm{a}-\mathrm{c}}{\mathrm{a}} \Rightarrow \mathrm{a}+\mathrm{b}=\mathrm{c} \\
& \text { 30. }\left|\mathrm{z}-\frac{4}{2}\right| \geq|\mathrm{z}|-\left|\frac{4}{2}\right| \Rightarrow 2 \geq|\mathrm{z}|-\frac{4}{|\mathrm{z}|} \\
& \quad \Rightarrow|\mathrm{z}|^{2}-2|\mathrm{z}|-4 \leq 0 \\
& \Rightarrow|\mathrm{z}|=\frac{2+2 \sqrt{5}}{2}=1+\sqrt{5} \text { (neglecting -ve value) }
\end{aligned}
$$

31. $\tan 15^{\circ}=2-\sqrt{3}=\frac{x}{x+50}$

$\Rightarrow(2-\sqrt{3}-1) x=-50(2-\sqrt{3})$
$\Rightarrow \mathrm{x}=\frac{-50(2-\sqrt{3})}{(1-\sqrt{3})}$
$\Rightarrow \mathrm{x}+25=\frac{-50(2-\sqrt{3})+25(1-\sqrt{3})}{1-\sqrt{3}}$
$=\frac{-100+50 \sqrt{3}+25-25 \sqrt{3}}{1-\sqrt{3}}$
$=\frac{-75+25 \sqrt{3}}{1-\sqrt{3}}=\frac{25(3-\sqrt{3})}{(\sqrt{3}-1)}=25 \sqrt{3}$
32. $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$
$=\left(\tan 9^{\circ}+\cot 9^{\circ}\right)-\left(\tan 27^{\circ}+\cot 27^{\circ}\right)$
$=\frac{\cos \left(9^{\circ}-9^{\circ}\right)}{\sin 9^{\circ} \cos 9^{\circ}}-\frac{\cos \left(27^{\circ}-27^{\circ}\right)}{\sin 27^{\circ} \cos 27^{\circ}}$
$=\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}=\frac{2\left(\sin 54^{\circ}-\sin 18^{\circ}\right)}{\sin 18^{\circ} \cdot \sin 54^{\circ}}$
$=\frac{2 \cdot 2 \cos 36^{\circ} \cdot \sin 18^{\circ}}{\sin 18^{\circ} \cdot \sin 54^{\circ}}=4$
33. $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$
$=\frac{\sqrt{3}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}}$
$=2\left(\frac{\sqrt{3} \cos 20^{\circ}-\sin 20^{\circ}}{2 \sin 20^{\circ} \cdot \cos 20^{\circ}}\right)$
$=2 \times 2\left(\frac{\sin 60^{\circ} \cdot \cos 20^{\circ}-\cos 60^{\circ} \cdot \sin 20^{\circ}}{\sin 40^{\circ}}\right)$
$=2 \times 2 \frac{\sin \left(60^{\circ}-20^{\circ}\right)}{\sin 40^{\circ}}=4$
34. $\alpha=\mathrm{A}+\mathrm{B}$ and $\mathrm{x}=\mathrm{A}-\mathrm{B}$
$\Rightarrow A=\frac{x+\alpha}{2}, B=\frac{\alpha-x}{2}$
$\frac{\tan A}{\tan B}=\frac{\tan \left(\frac{x+\alpha}{2}\right)}{\tan \left(\frac{\alpha-x}{2}\right)}=\frac{p}{q}$

$$
\begin{aligned}
& \Rightarrow \frac{2 \sin \left(\frac{\alpha+x}{2}\right) \cos \left(\frac{\alpha-x}{2}\right)}{2 \cos \left(\frac{\alpha+x}{2}\right) \sin \left(\frac{\alpha-x}{2}\right)}=\frac{p}{q} \\
& \Rightarrow \frac{\sin \alpha+\sin x}{\sin \alpha-\sin x}=\frac{p}{q} \\
& \Rightarrow \frac{\sin \alpha+\sin x+\sin \alpha-\sin x}{\sin \alpha+\sin x-\sin \alpha+\sin x}=\frac{p+q}{p-q} \\
& \Rightarrow \frac{2 \sin \alpha}{2 \sin x}=\frac{p+q}{p-q} \\
& \Rightarrow \sin x=\frac{(p-q) \sin \alpha}{p+q}
\end{aligned}
$$

35. $\sin ^{-1} \frac{3}{5}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{1}{7}$

$$
=\tan ^{-1} \frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4} \cdot \frac{1}{7}}=\tan ^{-1} \frac{21+4}{28-3}
$$

$$
=\tan ^{-1} \frac{25}{25}=\tan ^{-1} 1=\frac{\pi}{4}
$$

36. Let the distance between pole \& tower is ' b '.

Now, $\frac{\mathrm{h}_{\mathrm{T}}}{\mathrm{b}}=\tan 45^{\circ}=1 \Rightarrow \mathrm{~h}_{\mathrm{T}}=\mathrm{b}$
$\frac{\mathrm{h}_{\mathrm{T}}-\mathrm{h}_{\mathrm{P}}}{\mathrm{b}}=\tan 45^{\circ}=\frac{1}{\sqrt{3}} \Rightarrow \frac{\mathrm{~h}_{\mathrm{T}}-\mathrm{h}_{\mathrm{P}}}{\mathrm{h}_{\mathrm{T}}}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{\mathrm{h}_{\mathrm{T}}-\mathrm{h}_{\mathrm{P}}}{\mathrm{h}_{\mathrm{T}}-\left(\mathrm{h}_{\mathrm{T}}-\mathrm{h}_{\mathrm{P}}\right)}=\frac{1}{\sqrt{3}-1} \Rightarrow \frac{\mathrm{~h}_{\mathrm{T}}-\mathrm{h}_{\mathrm{P}}}{\mathrm{h}_{\mathrm{P}}}=\frac{\sqrt{3}+1}{2}$
\Rightarrow Statement ' 2 ' is correct,
$\frac{\mathrm{h}_{\mathrm{T}}-\mathrm{h}_{\mathrm{P}}+2 \mathrm{~h}_{\mathrm{P}}}{\mathrm{h}_{\mathrm{P}}}=\frac{\sqrt{3}+1+4}{2} \Rightarrow \frac{\mathrm{~h}_{\mathrm{T}}+\mathrm{h}_{\mathrm{P}}}{\mathrm{h}_{\mathrm{P}}}=\frac{5+\sqrt{3}}{2}$
\Rightarrow Statement ${ }^{\prime} 3^{\prime}$ is incorrect.
\therefore Option ' c ' right choice.
37. $a+b=2 b$

$$
\begin{aligned}
& \cot \frac{A}{2} \cdot \cot \frac{C}{2} \\
& =\sqrt{\frac{s(s-a)}{(s-b)(s-c)} \times \frac{s(s-c)}{(s-a)(s-b)}} \\
& =\frac{s}{s-b}=\frac{2 s}{2 s-2 b}=\frac{a+b+c}{a+b+c-2 b}=\frac{3 b}{b}=3
\end{aligned}
$$

38. $\sqrt{1+\sin A}=\left|\sin \frac{A}{2}+\cos \frac{A}{2}\right|$

$$
=\left\{\begin{array}{cc}
\sin \frac{\mathrm{A}}{2}+\cos \frac{\mathrm{A}}{2}, & 2 \mathrm{n} \pi-\frac{\pi}{4} \leq 2 \mathrm{n} \pi+\frac{3 \pi}{4} \\
-\left(\sin \frac{\mathrm{A}}{2}+\cos \frac{\mathrm{A}}{2}\right), & \text { otherwise }
\end{array}\right.
$$

So, $\sqrt{1+\sin A}=-\left(\sin \frac{A}{2}+\cos \frac{A}{2}\right)$
When $\frac{3 \pi}{4}<\frac{\mathrm{A}}{2}<\frac{5 \pi}{4}$
$\Rightarrow \frac{3 \pi}{2}<\mathrm{A}<\frac{5 \pi}{2}$
39. $\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}$
$=2 \cos ^{2} \mathrm{~A}+2 \cos ^{2} \mathrm{~B}+2 \cos ^{2} \mathrm{C}$
$\Rightarrow \cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}+\cos ^{2} \mathrm{C}=1$
$\Rightarrow \frac{3}{2}+\frac{1}{2}(\cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}+\cos 2 \mathrm{C})=1$
$\Rightarrow \cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}=-1$
$\Rightarrow 2 \cos (A+B) \cos (A-B)=-(1+\cos 2 C)$
$\Rightarrow-2 \cos C \cos (A-B)=-2 \cos ^{2} C$
$\Rightarrow \cos (A-B)=\cos C$
$\Rightarrow A-B=C$
Again, $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$
$\Rightarrow A+B+A-B=\pi$
$\Rightarrow A=\frac{\pi}{2}$
$\Rightarrow \Delta$ is right angle.
40. Range of $\sin ^{-1} \mathrm{x}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\Rightarrow \sin ^{-1} x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
41. All given points lie on the line of equation
ay $=b x$
All points are collinear
42. $x+2 y-2 z=9$
\Rightarrow Length of normal $=\frac{9}{\sqrt{1^{2}+2^{2}+(-2)^{2}}}=3$
43. $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\cos ^{2} \alpha+\cos ^{2} \beta=1-\cos ^{2} \gamma=\sin ^{2} \gamma$
\Rightarrow Statement 1 is correct
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2}=1$
$\Rightarrow 1-\sin ^{2} \alpha+1-\sin ^{2} \beta+1-\sin ^{2} \gamma=1$
$\Rightarrow \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$
\Rightarrow Statement 3 is correct
44. \angle between $x+y-3=0 \& x-y+3=0$ is
$90^{\circ} \Rightarrow \alpha=90^{\circ}$
As β is acute, therefore $\alpha>\beta$
$\vec{\alpha} \cdot \vec{\delta}=0 \Rightarrow \mathrm{a}+2 \mathrm{~b}-\mathrm{c}=0$
$\vec{\beta} \cdot \vec{\delta}=0 \Rightarrow 2 \mathrm{a}+\mathrm{b}+3 \mathrm{c}=0$
from (i) and (ii)
$\frac{\mathrm{a}}{5}=\frac{\mathrm{b}}{-5}=\frac{\mathrm{c}}{-5}$
$\Rightarrow \frac{\mathrm{a}}{1}=\frac{\mathrm{b}}{-1}=\frac{\mathrm{c}}{-1}=-\lambda$ (say)
$\Rightarrow \mathrm{a}=\lambda, \mathrm{b}=-\lambda, \mathrm{c}=-\lambda$
Again, $\vec{\delta} \cdot \vec{\gamma}=10$
$\Rightarrow 2 \mathrm{a}+\mathrm{b}+6 \mathrm{c}=2 \lambda-\lambda-6 \lambda=-5 \lambda=10$
$\Rightarrow \lambda=-2$
$\therefore \vec{\delta}=-2 \hat{\imath}+2 \hat{\jmath}+2 \hat{\mathrm{k}} \Rightarrow|\vec{\delta}|=\sqrt{12}=2 \sqrt{3}$
46. $(\hat{a}+\hat{b}) \times(\hat{a} \times \hat{b})$
$=\hat{a} \times(\hat{a} \times \hat{b})+\hat{b} \times(\hat{a} \times \hat{b})$
$=(\hat{a} \cdot \hat{b}) \hat{a}-(\hat{a} \cdot \hat{a}) \hat{b}+(\hat{b} \cdot \hat{b}) \hat{a}-(\hat{b} \cdot \hat{a}) \hat{b}$
$=k \hat{a}-\hat{b}+\hat{a}-k \hat{b}$
$=(\mathrm{k}+1)(\hat{\mathrm{a}}-\hat{\mathrm{b}})$
47. $\overrightarrow{\mathrm{AB}}=2 \hat{\mathrm{c}}-3 \hat{\jmath}+8 \hat{\mathrm{k}}$
work done $=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{AB}}=1 \times 2+3(-3)+2(8)$
$=2-9+16=9$ units
48. Let $\vec{a}=x \hat{\imath}+y \hat{\jmath}+3 \hat{k}$
$|\vec{a} \times \hat{\imath}|^{2}=z^{2}+y^{2}$
$|\vec{a} \times \hat{j}|^{2}=x^{2}+z^{2}$
$|\overrightarrow{\mathrm{a}} \times \hat{\mathrm{k}}|^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$
$\therefore 2\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)=2|\overrightarrow{\mathrm{a}}|^{2}$
49.

$\mathrm{PF}_{1}+\mathrm{PF}_{2}=10$
$\Rightarrow 2 \mathrm{a}=10 \Rightarrow \mathrm{a}=5$
$\mathrm{F}_{1} \mathrm{~F}_{2}=8 \Rightarrow 2 \mathrm{c}=8 \Rightarrow \mathrm{c}=4$
$a^{2}=b^{2}+c^{2} \Rightarrow b^{2}=3^{2} \Rightarrow b=3$
Area $=\pi \mathrm{ab}=\pi \times 3 \times 5=15 \pi$
45. Let $\vec{\delta}=a \hat{\imath}+b \hat{\jmath}+c \hat{k}$

Equation of line L is
$y-3=-4(x-1) \Rightarrow y-3=-4 x+4$
$\Rightarrow 4 \mathrm{x}+\mathrm{y}=7$
Solving equations, $x=\frac{3}{2}, y=1$
$\therefore \mathrm{AP}=\sqrt{\left(\frac{3}{2}-1\right)^{2}(1-3)^{2}}=\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}$
51. $\left|\begin{array}{lll}\mathrm{a} & 1 & 1 \\ 1 & \mathrm{~b} & 1 \\ 1 & 1 & \mathrm{c}\end{array}\right|=0$
$\Rightarrow C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1}$
$\left|\begin{array}{ccc}a & 1-a & 1-a \\ 1 & b-1 & 0 \\ 1 & 0 & c-1\end{array}\right|=0$
$\Rightarrow a(b-1)(c-1)-(1-a)(c-1)-(1-a)(b-1)=0$
Dividing by $(1-a)(1-b)(1-c)$, we get
$\frac{a}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=0$
$\Rightarrow \frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=-\frac{\mathrm{a}}{1-\mathrm{a}}$
Adding $\frac{1}{1-a}$ on both sides
$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1$

Equation of line is
$\frac{x+3}{8}=\frac{y-4}{-10}=\frac{z+8}{12}=\lambda$ (say)
$\Rightarrow x=8 \lambda-3, y=-10 \lambda+4, z=12 \lambda-8$,
since line intersects $X Y$ plane, so, $z=0$
$\Rightarrow \lambda=\frac{9}{3} \therefore \mathrm{x}=\frac{7}{3}, \mathrm{y}=\frac{-8}{3}$
\Rightarrow Point $\left(\frac{7}{3}, \frac{-8}{3}, 0\right)$
53. $2 x-3+10=3 \sqrt{\frac{34+x^{2}}{2}}$
$4 x^{2}+49+28 x=\frac{9\left(34+x^{2}\right)}{2}$
$8 x^{2}+98+56 x=306+9 x^{2}$
$x^{2}-56 x+208=0$
$x=\frac{+56 \pm \sqrt{3136-832}}{2}=28 \pm 24=4,52$
54. $2(1)^{2}+7(2)^{2}-20=2+28-20>0$ \therefore point lies outside the ellipse.
55.

$\mathrm{m}=\tan 120^{\circ}=-\sqrt{3}$
$y+5=-\sqrt{3} x \Rightarrow y+\sqrt{3} x+5=0$
56. Required Line
$(2 x-3 y+7)+\lambda(-42 y-4 y)(98-2)=0$
Putting $(2,3)$
$\Rightarrow(4-9+7)+\lambda(14+12+2)=0$
$\Rightarrow \lambda=-\frac{1}{14}$
$(28 x-7 x)+(-42 y-4 y)(98-2)=0$
$21 x-46 y+96=0$
57. $\mathrm{b}^{2}=2 \mathrm{a}, \mathrm{c}^{2}=\frac{9}{16} \mathrm{a}^{2}$

We know, $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$ So,
$a^{2}=2 a+\frac{9}{16} a^{2} \Rightarrow a=\frac{32}{7}$
$b^{2}=\frac{64}{7}$
Equation of ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Putting values of a and b
$\frac{49 x^{2}}{1024}+\frac{7 y^{2}}{64}=1$
58.

Let equation of circle is

$$
x^{2}-x+y^{2}+6 y+\lambda(-y-6+6 x)=0
$$

Putting (3, 4), we get
$9-3+16+24+\lambda(-4-6+18)=0$
$\Rightarrow 46+8 \lambda=0 \Rightarrow \lambda=\frac{-23}{4}$
$\therefore \mathrm{x}^{2}-\mathrm{x}+\mathrm{y}^{2}+6 \mathrm{y}-\frac{23}{4}(-\mathrm{y}-6+6 \mathrm{x})=0$
$\Rightarrow 4 x^{2}+4 y^{2}-4 x+24 y+23 y+138-138 x=0$
$\Rightarrow 4 x^{2}+4 y^{2}-142 x+47 y+138=0$
59.

Equation of plane is
$\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=1$
It passes through
$(\mathrm{a}, \mathrm{b}, \mathrm{c}) \Rightarrow \frac{\mathrm{a}}{\mathrm{p}}+\frac{\mathrm{b}}{\mathrm{q}}+\frac{\mathrm{c}}{\mathrm{r}}=1$
Equation of sphere is given by
$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{pz}-\mathrm{qy}-\mathrm{rz}=0$ with its centre at $\left(\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{z}_{\mathrm{c}}\right)$ such that
$\mathrm{x}_{\mathrm{c}}=\frac{\mathrm{p}}{2}, \mathrm{y}_{\mathrm{c}}=\frac{\mathrm{q}}{2}, \mathrm{z}_{\mathrm{c}}=\frac{\mathrm{r}}{2}$
$\Rightarrow \mathrm{p}=2 \mathrm{x}_{\mathrm{c}}, \mathrm{q}=2 \mathrm{y}_{\mathrm{c}}, \mathrm{r}=2 \mathrm{z}_{\mathrm{c}}$
\therefore locus of centre
$\Rightarrow \frac{\mathrm{a}}{\mathrm{x}}+\frac{\mathrm{b}}{\mathrm{y}}+\frac{\mathrm{c}}{\mathrm{z}}=2$
60. Let $\mathrm{P}_{1}=\mathrm{x}+\mathrm{y}+\mathrm{z}-1=0$
$P_{2}=2 x+3 y+4 z-7=0$

Equation of plane passing through the line of intersection of P_{1} and P_{2} is given by
$x+y+z-1+\lambda(2 x+3 y+4 z-7)=0$
$\Rightarrow \mathrm{x}(1+2 \lambda)+\mathrm{y}(1+3 \lambda)+\mathrm{z}(1+4 \lambda)-1-7 \lambda=0$
This is perpendicular to $x-5 y-3 z-5=0$
$\Rightarrow 1(1+2 \lambda)-5(1+3 \lambda)+3(1+4 \lambda)=0$
$\Rightarrow 1+2 \lambda-5-15 \lambda+3+12 \lambda=0$
$\Rightarrow-\lambda-1=0 \Rightarrow \lambda=-1$
\therefore Equation of plane is
$-x-2 y-3 z-1+7=0 \Rightarrow x+2 y+3 z=0$
61. $y=5^{\log x}$

$$
\begin{aligned}
& \Rightarrow \log y=(\log x)(\log 5) \\
& \Rightarrow \log x=\frac{\log y}{\log 5}=\log y^{\frac{1}{\log 5}} \Rightarrow y^{\frac{1}{\log 5}}, y>0
\end{aligned}
$$

62.

$f(x)=\left\{\begin{array}{rr}-\frac{x}{|x|}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
$=\left\{\begin{array}{cc}-1, & x>0 \\ 1 & x<0 \\ 0 & x=0\end{array}\right.$
$\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$
63. $y=(\cos x)^{y}$
$\Rightarrow \log y=y \log \cos x$
Differentiating both sides,

$$
\begin{aligned}
& \frac{1}{y} \frac{d y}{d x}=y \cdot(-\tan x)+\log \cos x \cdot \frac{d y}{d x} \\
& \Rightarrow\left(\frac{1}{y}-\log \cos x\right) \frac{d y}{d x}=-y \tan x \\
& \Rightarrow \frac{d y}{d x}=\frac{-y^{2} \tan x}{1-y \log \cos x}
\end{aligned}
$$

64. Both statements are correct.
65. Statements I and II are correct.
66. $\cos ^{-1} \frac{x-1}{x+1}+\sin ^{-1} \frac{x-1}{x+1}=\frac{\pi}{2}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=0$
67.

$$
\begin{gathered}
\int \tan ^{-1}(\sec \mathrm{x}+\tan \mathrm{x}) \mathrm{dx}=\int \tan ^{-1}\left\{\tan \left(\frac{\pi}{2}\right)-\frac{x}{2}\right\} \mathrm{dx} \\
=\int\left(\frac{\pi}{4}-\frac{x}{2}\right) \mathrm{dx}=\frac{\pi \mathrm{x}}{4}-\frac{x^{2}}{4}+c
\end{gathered}
$$

68. $f(x)=\left\{\begin{array}{cc}1-x^{2}, & 0<x \leq 1 \\ \log x, & 1<x \leq 2 \\ \log 2-1+0.5 x, & 2<x<\infty\end{array}\right.$
$\mathrm{f}^{\prime}(\mathrm{x})=-2 \mathrm{x}, 0<\mathrm{x} \leq 1$
69. $f(x)=x\left(x^{2}-1\right)$
$f^{\prime}(x)=x(2 x)+\left(x^{2}-1\right)=3 x^{2}-1$
$f^{\prime \prime}(x)=6 x$
At $\mathrm{f}^{\prime}(\mathrm{x})=0 \Rightarrow \mathrm{x}= \pm \frac{1}{\sqrt{3}}$
$\mathrm{f}(\mathrm{x})_{\text {max }}=\mathrm{f}\left(\frac{-1}{\sqrt{3}}\right)=\frac{-1}{\sqrt{3}}\left(\frac{1}{3}-1\right)=\frac{2}{3 \sqrt{3}}$
$\mathrm{f}(\mathrm{x})_{\text {min }}=\mathrm{f}\left(\frac{1}{\sqrt{3}}\right)=\frac{1}{\sqrt{3}}\left(\frac{1}{3}-1\right)=\frac{-2}{3 \sqrt{3}}$
70. All statements are correct.
71. $f(x)=\frac{\ln x}{x}$
$f^{\prime}(x)=\frac{\left(\frac{1}{x}\right) x-\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}$
$f^{\prime \prime}(x)=\frac{-\frac{1}{x} \cdot x^{2}-2 x(1-\ln x)}{x^{4}}$
$=\frac{-x-2 x(1-\ln x)}{x^{4}}=\frac{-[1+2-2 \ln x]}{x^{3}}$
$=\frac{-(3-2 \ln \mathrm{x})}{\mathrm{x}^{3}}$
At $f^{\prime}(x)=0 \Rightarrow \ln x=1 \Rightarrow x=e$
$f^{\prime \prime}(e)=\frac{-(3-2)}{e^{3}}=-\frac{1}{\mathrm{e}^{3}}<0$
$\mathrm{f}(\mathrm{x})_{\max }=\mathrm{f}(\mathrm{e})=\frac{\ln \mathrm{e}}{\mathrm{e}}=\frac{1}{\mathrm{e}}$
72. $f(x)=\left\{\begin{array}{cc}x-x^{3}, & x \geq 0 \\ -x-x^{3}, & x<0\end{array}\right.$
$f(-x)\left\{\begin{array}{l}x+x^{3}, \quad x \geq 0=f(x) \\ x+x^{3}, \quad x<0=-f(x)\end{array}\right.$
Neither even nor odd
73. $\ell_{1}=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{e}^{\sin \mathrm{x}}$
$\ell_{2}=\lim _{\mathrm{n} \rightarrow 0} \frac{\mathrm{e}^{\sin (\mathrm{x}+\mathrm{n})}-\mathrm{e}^{\sin \mathrm{x}}}{\mathrm{n}}=\frac{d}{d x} e^{\sin \mathrm{x}}=\ell_{1}$
$\ell_{3}=\int e^{\sin x} \cos x d x=\int e^{t} d t=e^{t}+c$
$=\mathrm{e}^{\sin \mathrm{x}}+\mathrm{c}$
$\frac{\mathrm{d}}{\mathrm{dx}}\left(\ell_{3}\right)=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{e}^{\sin \mathrm{x}}=\ell_{2}$
74.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{a x+h}{b y+k} \\
& \int(b y+k) d y=\int(a x+h) d x \\
& \frac{b y^{2}}{2}+k y=\frac{a x^{2}}{2}+h x+c \\
& \frac{a x^{2}}{2}-\frac{b y^{2}}{2}+h x-k y+c=0 \\
& a=-b \neq 0
\end{aligned}
$$

75.

$\lim _{\substack{x \rightarrow \pi / 2 \\ m=0}} \frac{\sin x}{x}=L \Rightarrow L=2 / \pi$
$\mathrm{m}=0$
76.

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sqrt{1+\sin \frac{x}{2} d x} \\
& =\int_{0}^{2 \pi}\left|\sin \frac{x}{4}+\cos \frac{x}{4}\right| d x \\
& =4\left[\sin \frac{x}{4}-\cos \frac{x}{4}\right]_{0}^{2 \pi} \\
& =8
\end{aligned}
$$

77.

Area $=4 \times \frac{1}{2} \times 1=2$ sq. unit
78.
$y=\frac{x^{2}}{1+x^{4}}$
$\Rightarrow \mathrm{y} \geq 0$ Also,

$$
y=\frac{x^{2}}{1+x^{4}}=\frac{1}{x^{2}+\frac{1}{x^{2}}} \Rightarrow y \leq \frac{1}{2}
$$

$\Rightarrow \mathrm{y} \in\left[0, \frac{1}{2}\right]$
79. L. H. D.
$=\lim _{h \rightarrow 0} \frac{(\mathrm{k}-1) \sin \pi(\mathrm{k}-\mathrm{h})-[\mathrm{k}] \sin \mathrm{k} \pi}{-\mathrm{h}}$
$=\lim _{h \rightarrow 0} \frac{(k-1) \sin (\mathrm{k} \pi-\pi \mathrm{h})}{-\mathrm{h}}$
$=\lim _{h \rightarrow 0} \frac{ \pm(\mathrm{k}-1) \sin (\pi \mathrm{h})}{-\mathrm{h}}$
$=\mp(\mathrm{k}-1) \pi$
$=(-1)^{\mathrm{k}}(\mathrm{k}-1) \pi$
80. $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{2}-1,[0, \pi]$
$\tan [\mathrm{f}(\mathrm{x})]=\tan \left[\left[\frac{\mathrm{x}}{2}-1\right]\right.$
$\frac{1}{f(x)}=\frac{1}{\frac{x}{2}-1}$ is discontinues at $x=2$
Also, $\tan [\mathrm{f}(\mathrm{x})]$ is discontinuous for $\mathrm{x}=2$ in $[0, \pi]$
81.
$\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=p^{2}\left[\frac{d^{2} y}{d x^{2}}\right]^{2}$
Order $=2$, Degree $=2$
82.

$$
\begin{aligned}
& y=\cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right) \\
& =\frac{\pi}{2}-\sin ^{-1},\left(\frac{2 x}{1+x^{2}}\right) \\
& =\frac{\pi}{2}-2 \tan ^{-1} x,|x|<1
\end{aligned}
$$

83.

$f^{\prime}(x)=\frac{-2 x\left(-e^{-x 2}\right)}{2 \sqrt{1-e^{-x 2}}}=\frac{x^{-x 2}}{\sqrt{1-\mathrm{e}^{-x 2}}}$
Which is defined $\forall x \in R$, except $x=0$
$\Rightarrow \mathrm{f}(\mathrm{x})$ is differentiable on $(-\infty, 0) \cup(0, \infty)$
84. $f(x)=\sin x+\cos x$
\Rightarrow maximum value $=\sqrt{2}$
(A) \rightarrow (2)
$\mathrm{f}(\mathrm{x}) 3 \sin \mathrm{x}+4 \cos \mathrm{x}$
\Rightarrow maximum value $=\sqrt{3^{2}+4^{2}}=5$
(B) \rightarrow (3)
$f(x)=2 \sin +\cos x$
\Rightarrow maximum value $=\sqrt{4+1}=\sqrt{2}$
(C) \rightarrow (4)
$f(x)=\sin +3 \cos x$
maximum value $=\sqrt{1+9}=\sqrt{10}$
(D) \rightarrow (1)
85. L. H.Lt $=$ R. H. $L t=f(0)=0$
$\Rightarrow \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
L. H. $\mathrm{D}=$ R. H. $\mathrm{D}=-1$
$\Rightarrow f(x)$ is differentiable at $x=0$
86. $f(x)=\frac{x}{x}, \neq 0$
$\Rightarrow y=1, x \neq 0$

87. $f(n)=\left[\frac{1}{4}+\frac{n}{1000}\right]$
$\therefore \sum_{\mathrm{n}-1}^{1000}+(\mathrm{n})$
$=\left[\frac{1}{4}+\frac{1}{1000}\right]+\left[\frac{1}{4}+\frac{2}{1000}\right]+\left[\frac{1}{4}+\frac{1}{1000}\right]+\ldots$
$\ldots .+\left[\frac{1}{4}+\frac{1000}{1000}\right]$
$=0+0+0+\cdots\left[\frac{1}{4}+\frac{750}{1000}\right]+\left[\frac{1}{4}+\frac{750}{1000}\right]+\ldots$
$\ldots+\left[\frac{1}{4}+\frac{1000}{1000}\right]$
$=1+1+1+\cdots \ldots .+1$ (251 times)
$=251$
88.
$\int\left[\frac{1}{\log x}-\frac{1}{(\log x)^{2}}\right] d x$
Putting $\log x=t$
$\Rightarrow \mathrm{x}=\mathrm{e}^{\mathrm{t}} \Rightarrow \mathrm{dx}=\mathrm{e}^{\mathrm{t}} \mathrm{dt}$
$\int e^{t}\left[\frac{1}{t}-\frac{1}{t^{2}}\right] d t=\frac{e^{t}}{t}+c=\frac{x}{\log x}+c$
89. The height and the radius of the base of an open cylinder of given surface area and maximum volume are equal i.e., radius=height.
\Rightarrow Diameter $=2 \times$ height.

$$
\Rightarrow \mathrm{k}=2
$$

90.

$$
\begin{aligned}
& \int_{0}^{\pi / 4} \sqrt{\tan x}+\int_{0}^{\pi / 4} \sqrt{\cot x} d x \\
& =\int_{0}^{\pi / 4}(\sqrt{\tan x}+\sqrt{\cot x}) d x \\
& =\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{\sqrt{\sin x \cos x}} d x \\
& =\sqrt{2} \int_{0}^{\pi / 4} \frac{(\sin x+\cos x)}{\sqrt{1-(\sin x \cos x)^{2}}} d x
\end{aligned}
$$

Putting $\sin x-\cos x=t$
$\Rightarrow d t=(\sin x+\cos x) d x$ when $\mathrm{x}=0, \mathrm{t}=-1$
and $\mathrm{x}=\frac{\pi}{4}, \mathrm{t}=0$
$=\sqrt{2} \int_{-1}^{0} \frac{1}{\sqrt{1-\mathrm{t}^{2}}} \mathrm{dt}=\sqrt{2} \int_{-1}^{0}\left[\sin ^{-1} \mathrm{t}\right]_{-1}^{0}$
$=\sqrt{2}[0-(-\pi / 2)]=\frac{\pi}{\sqrt{2}}$
91. $g(x)=[x]$
$f(x)=[x]^{2}-[x]$
$f(x)$ is discontinuous at every integers except $\mathrm{x}=1$.
92. $y=A[\sin (x+c)+\cos (x+c)]$

$$
\begin{aligned}
& \frac{d y}{d x}=A[\cos (x+c)-\sin (x+c)] \\
& \frac{d^{2} y}{d x^{2}}=-A[\sin (x+c)+\cos (x+c)]=-y \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}+y=0
\end{aligned}
$$

93. Both statements are correct but statement 2 is not the correct explanation of statement 1.
94.

$\frac{d y}{d x}-\frac{y \phi^{\prime}(x)}{\phi(x)}=\frac{-y^{2}}{\phi(x)}$
$\Rightarrow \frac{1}{\mathrm{y}^{2}} \cdot\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)-\frac{1}{y} \cdot \frac{\phi^{\prime}(\mathrm{x})}{\phi(\mathrm{x})}=\frac{1}{\phi(\mathrm{x})}$
we get
$\frac{d t}{d x}=\frac{1}{y^{2}}\left(\frac{d y}{d x}\right)$
$\Rightarrow \frac{\mathrm{dt}}{\mathrm{dx}}+\frac{\phi^{\prime}(\mathrm{x})}{\phi(\mathrm{x})} \mathrm{t}=-\frac{1}{\phi(\mathrm{x})}$
I. $F=e^{\int \frac{\phi^{\prime}(x)}{\phi(x)} d x}=e^{\log \phi(x)}=\phi(x)$

Solution of differential equation is
$t \cdot \phi(x)=\int-\frac{1}{\phi(x)} \times \phi(x) d x$
$\Rightarrow-\frac{1}{y} \phi(x)=-x \Rightarrow \frac{\phi(x)}{y}=x$
$\Rightarrow \mathrm{y}=\frac{\phi(\mathrm{x})}{\mathrm{x}}+\mathrm{c}$
95.
$f(x)=\frac{4 x+x^{4}}{1+x^{3}}$
$g(x)=\ln \left(\frac{1+x}{1-x}\right)$
$g\left(\frac{e-1}{e+1}\right)=\ln \left[\frac{e+1+e-1}{e+1-e+1}\right]=\ln \left(\frac{2 e}{2}\right)=1$
f $\operatorname{og}\left(\frac{\mathrm{e}-1}{\mathrm{e}+1}\right)=\mathrm{f}(1)=\frac{4+1}{1+4}=1$
96. $\left|\begin{array}{lll}1-\alpha & \alpha-\alpha^{2} & \alpha^{2} \\ 1-\beta & \beta-\beta^{2} & \beta^{2} \\ 1-\gamma & \gamma-\gamma^{2} & \gamma^{2}\end{array}\right|$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
$=\left|\begin{array}{lll}1 & \alpha-\alpha^{2} & \alpha^{2} \\ 1 & \beta-\beta^{2} & \beta^{2} \\ 1 & \gamma-\gamma^{2} & \gamma^{2}\end{array}\right|$
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3}$
$=\left|\begin{array}{lll}1 & \alpha & \alpha^{2} \\ 1 & \beta & \beta^{2} \\ 1 & \gamma & \gamma^{2}\end{array}\right|=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$
97. $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 3 & 1\end{array}\right]$
$\mathrm{C}_{11}=1 \quad \mathrm{C}_{12}=-2 \quad \mathrm{C}_{13}=6$
$C_{21}=6 \quad C_{22}=1 \quad C_{23}=-3$
$\mathrm{C}_{31}=-2 \quad \mathrm{C}_{32}=4 \quad \mathrm{C}_{33}=1$
\therefore Adj $A=\left[\begin{array}{ccc}1 & 6 & -2 \\ -2 & 1 & 4 \\ 6 & -3 & 1\end{array}\right]$
\Rightarrow Average of any five observations $=24$.
98. $A^{2}=\left[\begin{array}{cc}-2 & 2 \\ 2 & 2\end{array}\right]\left[\begin{array}{cc}-2 & 2 \\ 2 & -2\end{array}\right]\left[\begin{array}{cc}8 & -8 \\ -8 & 8\end{array}\right]$
$=-4\left[\begin{array}{cc}-2 & 2 \\ 2 & -2\end{array}\right]=-4 \mathrm{~A}$
99. Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$z^{2}-1=x^{2}-y^{2}+2 x y i-i$ $=x^{2}-y^{2}+(2 x y-1) i$
$\operatorname{Re}\left(z^{2}-i\right)=2$
$\Rightarrow x^{2}-y^{2}=2$
This equation represents rectangular hyperbola.
100. $\mathrm{p}+\mathrm{q}+\mathrm{r}=\mathrm{a}+\mathrm{b}+\mathrm{c}=0$
$\left|\begin{array}{lll}p a & q b & r c \\ q c & r a & p b \\ r b & p c & q a\end{array}\right|$
$=\operatorname{pqr}\left(\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}\right)-\operatorname{abc}\left(\mathrm{p}^{3}+\mathrm{q}^{3}+\mathrm{r}^{3}\right)$
$=\operatorname{pqr}(3 a b c)-a b c(3 p q r)$
$=0\left(\therefore \mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}=3 a b c \mathrm{p}^{3}+\mathrm{q}^{3}+\mathrm{r}^{3}=3 \mathrm{pqr}\right)$
101.
$n(s)={ }^{4} C_{2}=\frac{4 \times 3}{2}=6$
$\mathrm{n}(\mathrm{E})={ }^{2} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1}=2 \times 2=4$
$P(E)=\frac{4}{6}=\frac{2}{3}$
102. Possible primes are $2,3,5$.
$\frac{2}{3} \times \frac{1}{3}+\frac{1}{3} \times \frac{2}{3}=\frac{4}{9}$
103.

$$
\mathrm{n}(\mathrm{X})=16, \mathrm{n}(\mathrm{Y})=25 \text { and } \mathrm{S}=51
$$

$$
\Rightarrow \mathrm{P}(\mathrm{X})=\frac{16}{51}, \mathrm{P}(\mathrm{Y})=\frac{25}{51}
$$

104. $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$P(B)=\frac{2}{3}-\frac{1}{2}+\frac{1}{6}=\frac{1}{3}$
$\therefore P(\bar{A} \cap B)=\frac{1}{3}-\frac{1}{6}=\frac{1}{6}$
105. Statement 1 and statement 2 are
correct. Mean derivation is least when measured about mean, therefore statement 3 is wrong.
106.

As standard deviation is ' 0 ', therefore all observations will be equal to 24 .
107.
$=$ regression coefficient of x on y
$\Rightarrow(x, y)$ lies on $(y=x)$ line.
108.
$P(B \mid \bar{A})=\frac{P(B \cap \bar{A})}{P(\overline{\mathrm{~A}})}$
$P(B \cap \bar{A})=P(B)-P(A \cap B)=\frac{1}{12}$
$\mathrm{P}(\overline{\mathrm{A}})=\frac{2}{3}$
$\therefore P\left(\frac{B}{\overline{\mathrm{~A}}}\right)=\frac{1 / 12}{2 / 3}=\frac{1}{8}$
109. $\quad \mathrm{np}=\frac{2}{3}, \mathrm{npq}=\frac{5}{9}$
$\Rightarrow \mathrm{q}=\frac{5}{9} \times \frac{3}{2}=\frac{5}{6}$
$\Rightarrow \mathrm{p}=\frac{1}{6}, \mathrm{n}=4$
$p(x=2)={ }^{4} C_{2}\left(\frac{1}{6}\right)^{2} \times\left(\frac{5}{6}\right)^{2}$
$=6 \times \frac{1}{36} \times \frac{25}{36}=\frac{25}{216}$
110. $\quad \mathrm{p}($ all reach safely $)=\left(\frac{1}{3}\right)^{5}$
$p(4$ reach safely $)=5 \times\left(\frac{1}{3}\right)^{2} \frac{2}{3}$
$p($ at least 4 reach safely $)=\frac{11}{243}$
111.
$p($ none born in same month $)=\frac{12 \times 11 \times 10}{12 \times 12 \times 12}$
p (at least two born in same month)
$=1-\frac{12 \times 11 \times 10}{12 \times 12 \times 12}=\frac{144-110}{144}=\frac{17}{72}$
112. $\overline{\mathrm{x}}=10, \overline{\mathrm{y}}=90$
$\sigma \mathrm{x}=3, \sigma \mathrm{y}=10$
$r_{x y}=0.8$
Regression equation x on y is
$\Rightarrow \mathrm{x}-10=\mathrm{r} \frac{\sigma \mathrm{x}}{\sigma \mathrm{y}}(\mathrm{y}-90)$
$\Rightarrow x-10=0.8 \times \frac{3}{12}(y-90)$
$\Rightarrow \mathrm{x}-10=0.2(\mathrm{y}-90)$
$\Rightarrow x=-8+0.2 y$
113.
$\mathrm{P}(\mathrm{B} \cap \overline{\mathrm{C}})=\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \overline{\mathrm{C}})+\mathrm{P}(\overline{\mathrm{A}} \cap \mathrm{B} \cap \overline{\mathrm{C}})$
$=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$
$P(B)=P(B \cap C)+P(B \cap \bar{C})$
$\Rightarrow P(B \cap C)=P(B)-P(B \cap \bar{C})$
$=\frac{3}{4}-\frac{2}{3}=\frac{1}{12}$
114. Total expenditure of $A=10,000$

Total expenditure of $B=8,100$
So, area of A : area of $B=10,000: 8,100=100: 81$
\Rightarrow radii of A : radii of $B=\sqrt{100}: \sqrt{81}=10: 9$
115. The arithmetic mean will always be between minimum and maximum value so out of the given option ' $n / 2$ ' is possible value.
116. P (to know correct answer) $=p$
P (to guess correct answer) $=(1-p) \times(1 / m)$
P (to answer correctly) $=p+\frac{1-p}{m}$
So, required probability
$=\frac{p}{p+\frac{1-p}{m}}=\frac{m p}{1+p(m-1)}$
117.

$$
\begin{aligned}
& \frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}-\sqrt{\mathrm{x}_{1} \mathrm{x}_{2}}>1 \\
& \Rightarrow \frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}>\sqrt{\mathrm{x}_{1} \mathrm{x}_{2}}+1 \\
& \Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}>2 \sqrt{\mathrm{x}_{1} \mathrm{x}_{2}}+2 \\
& \Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}-2 \sqrt{\mathrm{x}_{1} \mathrm{x}_{2}}>2 \\
& \Rightarrow\left(\sqrt{\mathrm{x}_{1}}-\sqrt{\mathrm{x}_{2}}\right)^{2}>2 \\
& \Rightarrow\left|\sqrt{\mathrm{x}_{1}}-\sqrt{\mathrm{x}_{2}}\right|>\sqrt{2}
\end{aligned}
$$

118. Variance is independent of change of origin but not scale. So, Statement 1 is incorrect, Statement 2 is correct.
119. $n(S)={ }^{5} C_{3}=10$
$n(E)={ }^{4} C_{3}-1=3$

$$
P(E)=\frac{3}{10}=0.3
$$

120. Coefficient of correlation

$$
=\sqrt{0 \cdot 2 \times 1 \cdot 8}=0 \cdot 6
$$

General Ability Test NDA 22017 Question Paper

PART-A

Synonyms

Directions: Each item in this section consists of a sentence with an underlined word/words followed by four options. Select the option that is nearest in meaning to the underlined word/words and mark your response in your Answer Sheet accordingly.

1. The discussion was wound up after a long and fruitful exchange of views.
(a) postponed
(b) cut short
(c) interrupted
(d) concluded
2. He was fully alive to the need for making adjustments.
(a) concerned about
(b) worried about
(c) aware of
(d) indifferent about
3. The police officer tried to intimidate the witness but in vain.
(a) inform
(b) reward
(c) frighten
(d) persuade
4. We must adopt drastic measures to control population growth.
(a) simple
(b) dramatic
(c) realistic
(d) severe
5. He is extremely meticulous in his approach.
(a) simple
(b) careful
(c) fair
(d) reasonable
6. The experts' minute examination brought light to some important clues.
(a) quick
(b) detailed
(c) superficial
(d) prolonged
7. The decision of the Union Government to repeal the Urban Ceiling Act has been welcomed by all.
(a) suppress
(b) amend
(c) cancel
(d) withhold
8. This is his maiden appearance on the screen.
(a) first
(b) last
(c) girlish
(d) shy
9. At the end of the marathon everybody was exhausted.
(a) weakened
(b) honoured
(c) satisfied
(d) tired
10. He gave me a counterfeit coin.
(a) rare
(b) fake
(c) unmatured
(d) inferior

Antonyms

Directions: Each item in this section consists of a sentence with an underlined word/words followed by four options. Select the option that is opposite in meaning to the underlined word/words and mark your response in your Answer Sheet accordingly.
11. My mother has been working hard for the last two weeks and she feels run down.
(a) morbid
(b) energetic
(c) exhausted
(d) emotional
12. The President condemned the act of violence during the celebration of the festival.
(a) reason
(b) instigation
(c) restraint
(d) sobriety
13. The students made a generous contribution to the flood relief fund.
(a) niggard
(b) selfish
(c) spendthrift
(d) indecent
14. He was just idle by temperament.
(a) employed
(b) occupied
(c) industrious
(d) happy
15. Most of the decisions taken by the officer were unjust.
(a) serious
(b) lenient
(c) correct
(d) imbecile
16. He is a loving father and takes great delight in his children.
(a) revolt
(b) dissatisfaction
(c) enjoyment
(d) disgust
17. He was quite concerned about his son's career.
(a) unrelated
(b) indifferent
(c) dispassionate
(d) carefree
18. They are confident of success.
(a) imprudent
(b) impatient
(c) diffident
(d) reluctant
19. We carried on the search for the missing person.
(a) delayed
(b) reconsidered
(c) broke up
(d) called off
20. This T.V. has may indigenous components.
(a) Indian
(b) foreign
(c) unnatural
(d) genuine

Selecting Words

Directions: In the following passage, at certain points you are given a choice of four words marked (a), (b), (c), and (d), one of which fits the meaning of the passage. Choose the best word out of the four. Mark the letter, viz., (a), (b), (c), or (d), relating to this word on your Answer Sheet. Examples K and L have been solved for you.

K	
The	
(a) boy was in the school in Shimla	(a) She was homesick.

(b) horse	(b) It
(c) dog	(c) He
(d) cow	(d) Her

Explanation: Out of the list given in item K, only, 'boy' is the correct answer because usually, a boy, and not a horse, a dog or a cow, attends school. So '(a)' is to be marked on the Answer Sheet for item K. A boy usually referred to as 'he', so for item L, ' (c) ' is the correct answer. Notice that to solve the first item K you have to read the rest of the sentence and then see what fits best.

Passage

After this incident I went to Nainital and returned after nearly a month. I had
21. (a) hardly
(b) barely
(c) merely
(d) rarely
taken 22. (a) out my clothes when I saw Gangu standing
(b) away
(c) off
(d) on
23. (a) by a new baby. He was 24. (a) jumping
(b) near
(b) bursting
(c) with
(c) dancing
(d) at
(d) singing
with joy. Even Nanda 25. (a) could not have

> (b) would
(c) should
(d) ought
26. (a) experimented such joy 27. (a) at
(b) show
(b) bursting
(c) should
(c) on
(d) heard
(d) into
getting Krishna. His face had the same
28. (a) light
(b) glow
(c) sense
(d) hope
that 29. (a) comes on the face of a 30. (a) starved
(b) appears
(b) starving
(c) rises
(c) hungry
(d) shows
(d) shows
man after a full meal.

Ordering of words in a sentence

Directions: Each of the following items in this section consists of a sentence, the parts of which have been jumbled. These parts have been labelled P, Q, R, and S. Given below each sentence are four sequences namely (a), (b), (c) and (d). You are required to re-arrange the jumbled parts of the sentence and mark your response accordingly.
31. The spirit of man
(P) has slowly and painfully surmounted
(Q) and his growing intelligence
(R) all the obstacles that have come in his way
(S) has faced all kinds of dangers
(a) Q P S R
(b) S Q P R
(c) R P Q S
(d) PRQS
32. After our school boys had won a well-contested hockey match
(P) so that they might communicate the news of their victory to the headmaster
(Q) who is a keen sportsman
(R) they came to school in high spirits
(S) and takes a very lively interest in school games
(a) Q P S R
(b) S Q P R
(c) R P Q S
(d) PRQS
33. Even a leisurely game like cricket
(P) demanding grace rather than strength
(Q) and over the rough tactics of the Australian team that visited England in 1921.
(R) as we saw in the controversy over body-line bowling
(S) can cause much ill-will
(a) P S R Q
(b) R S P Q
(c) S R Q P
(d) Q P R S
34. Scientists point out
(P) of sunspot activity
(Q) that it is an aftermath that
(R) has now reached its peak
(S) of the eleven-year cycle
(a) R S P Q
(b) P Q S R
(c) Q R P S
(d) Q S P R
35. As the ship streams from San Diego
(P) as walls of gray water from a distant storm in the North Pacific
(Q) making the greener among us miserable with sea sickness
(R) rock and toss the ship
(s) those of us aboard have a personal demonstration of powerful ocean movement
(a) P Q R S
(b) S R P Q
(c) S P R Q
(d) Q S R P

Spotting Errors

Directions: Each item in this section has a sentence with three underlined parts labelled (a), (b), and (c). Read each sentence to find out whether there is any error in any underlined part and indicate your response in the Answer Sheet against the corresponding letter i.e., (a), (b) or (c). If you find no error, your response should be indicated as (d).
36. An electrical circuit
(a)
traversed by electric current.
(c)
is the complete path
(b)

No error.
(d)
37. He waved us a by-by as he boarded the train
(a)
(b)
which disappeared into the tunnel. No error
(c)
(d)
38. There was great deal that had to be scrapped that must be scrapped:
(a)
but surely India could not have been what she undoubtedly was
(b)
and could not have continued a cultured existence for thousands of years. No error.
(c)
(d)
39. With regard to interior decoration, it is the attention given to the less overt aspects of using space
(a)
that give it life, an identity, a quality
(b)
that makes it exciting and unusual. No error.
(c)
(d)
40. $\frac{\text { A small parcel }}{\text { (a) }} \frac{\text { of novel is }}{\text { (b) }} \frac{\text { better than none. }}{\text { (c) }}$

No error.
(d)

Fill in the blanks

Directions: Each of the following sentences in this section has a blank space and four words or group of words given after the sentence. Select the word or group of words you consider most appropriate for the blank space and indicate your response on the Answer Sheer accordingly.
41. He looks as if he \qquad weary.
(a) is
(b) was
(c) would be
(d) were
42. My house is insured \qquad theft and fire.
(a) for
(b) against
(c) in
(d) towards
43. The result of the prolonged discussion was
\qquad _.
(a) disappointment
(b) disappointing
(c) disappointed
(d) to disappoint
44. You are lucky \qquad in the $20^{\text {th }}$ century.
(a) by being born
(b) to have been born
(c) for being born
(d) to have born
45. Sita is true to \qquad .
(a) word
(b) her words
(c) the words
(d) words
46. Years \qquad since I saw her last.
(a) have passed
(b) had passed
(c) had been passing
(d) have been passing
47. When he heard the terrible noise, he asked me what was \qquad on.
(a) happening
(b) being
(c) getting
(d) going
48. Could you lend me some money? I am very \qquad of cash at the moment.
(a) down
(b) Iow
(c) short
(d) scarce
49. I saw her when she was standing \qquad the side of the statue.
(a) by
(b) at
(c) in
(d) beyond
50. True friends never \qquad their loved ones in adversity.
(a) abuse
(b) criticize
(c) befool
(d) desert

PART-B
51. Which one of the following was set as a target of average growth of GDP of India over the plan period 2012-2017 by the Approach Paper to the Twelfth Five Year Plan?
(a) 7 percent
(b) 8 percent
(c) 9 percent
(d) 10 percent
52. Which one of the following is not a subject that has been devolved to the Panchayati Raj Institutions by the II^{1} Schedule of the Constitution of India?
(a) Non-conventional energy sources
(b) Roads
(c) Higher education
(d) Libraries
53. Who among the following used the term Industrial Revolution for the first time in English to describe the changes that occurred in the

British industrial development between 1760 and 1820?
(a) Friedrich Engles
(b) Eric Hobsbawm
(c) Arnold Toynbee
(d) Georges Michelet
54. Who among the following is the author of the book 'The Indian Struggle, 1920-1934'?
(a) Maulana Abul Kalam
(b) Jayprakash Narayan
(c) Subhash Chandra Bose
(d) Manabendra Nath Roy
55. Which one of the following about the Swadeshi Campaign in 1896 is not correct?
(a) Its centre was Maharashtra
(b) Its main participants were students
(c) It opposed the levy of tariff on imports
(d) It publicly burnt foreign clothes
56. Which one of the following associations was founded in London by Dadabhai Naoroji in 1866?
(a) The Bengal British India Society
(b) The East India Association
(c) The British Indian Association
(d) The Madras Native Association
57. Mariana Trench is located in the ocean floor of
(a) Southern Atlantic Ocean
(b) Western Pacific Ocean
(c) Eastern Pacific Ocean
(d) Northern Atlantic Ocean
58. Taklamakan Desert is situated in
(a) Western Asia
(b) Southern fringe of Sahara in Africa
(c) South America
(d) Central Asia
59. Rudraprayag is situated at the confluence of rivers Alaknanda and
(a) Bhagirathi
(b) Mandakini
(c) Nandakini
(d) Dhauliganga
60. Arrange the following Indian cities according to their locations from west to east:

1. Bilaspur
2. Jodhpur
3. Bhopal
4. Ranchi

Select the correct answer using the code given below:
(a) 3-2-1-4
(b) 2-3-1-4
(c) 4-1-2-3
(d) 2-1-3-4
61. The Kashmir region receives additional amount of precipitation during the winter brought by,
(a) South-west Monsoon
(b) Western Disturbances
(c) Retreating Monsoon
(d) Temperate Cyclone
62. Which part of India has the Kalakot tertiary coal field?
(a) Brahmaputra river basin of Assam
(b) Damodar river basin of Jharkhand and West Bengal
(c) Himalayan mountain region
(d) Cardamon hills in Kerala
63. Tendons through which muscles are connected to bones are tightly compacted bundles of which one of the following fibrous protein?
(a) fibrin
(b) collagen
(c) elastin
(d) cellulose
64. Which one of the following is the scientific name of the causal organism of elephantiasis?
(a) Ascaris lumbricoides
(b) Culex pipiens
(c) Wuchereria bancrofti
(d) Fasciola hepatica
65. Melanin is the natural pigment that gives color to human skin, hair, and the iris. It provides protection against
(a) Ultraviolet radiation
(b) Infrared radiation
(c) X-ray radiation
(d) Short wave radio radiation
66. Intake of which one of the following food components should be minimized by patients having Gouty Arthritis due to elevated serum uric acid level?
(a) Food fibers
(b) Nucleic acids
(c) Lipids
(d) Carbohydrates
67. Which one of the following statements about microbes is not correct?
(a) They are used in sewage treatment plants.
(b) They are used in industrial fermenters for the production of beverages.
(c) No antibiotic has been obtained from any microbe.
(d) They are used to get many bioactive molecules for the treatment of diseases.
68. Golden rice is a genetically-modified crop plant where the incorporated gene is meant for biosynthesis of
(a) Omega-3 fatty acids
(b) Vitamin A
(c) Vitamin B
(d) Vitamin C
69. An object moves in a circular path with a constant speed. Which one of the following statements is correct?
(a) The centripetal acceleration of the object is smaller for a gentle curve (i.e., curve of larger radius) than that for a sharp curve (i.e., curve of smaller radius).
(b) The centripetal acceleration is greater for a gentle curve than that for a sharp curve.
(c) The centripetal acceleration is the same for both the gentle and sharp curves.
(d) The centripetal acceleration causes the object to slow down.
70. The force acting on a particle of mass moving along the x-axis is given by $f(x)=A x^{2}-B x$. Which one of the following is the potential energy of the particle?
(a) $2 A x-B$
(b) $-\frac{x^{2}}{6}(2 A x-3 B)$
(c) $\mathrm{Ax}^{2}-\mathrm{Bx}^{2}$
(d) Zero
71. The symbol of SI unit of inductance is H. It stands for
(a) Holm
(b) Halogen
(c) Henry
(d) Hertz
72. In a vacuum, a five-rupee coin, a feather of a sparrow bird and a mango are dropped
simultaneously from the same height. The time taken by them to reach the bottom is $\mathrm{t}_{1}, \mathrm{t}_{2}$, and t_{3}. respectively. In this situation, we will observe that
(a) $t_{1}>t_{2}>t_{3}$
(b) $t_{1}>t_{3}>t_{2}$
(c) $t_{3}>t_{1}>t_{2}$
(d) $t_{1}=t_{2}=t_{3}$
73. Electron emission from a metallic surface by application of light is known as
(a) Thermionic emission
(b) Photoelectric emission
(c) High field emission
(d) Auto electronic emission
74. How does light take to reach the Earth from the Sun?
(a) about 4 minutes
(b) about 8 minutes
(c) about 24 minutes
(d) about 24 hours
75. Radioactivity is measured by
(a) GM Counter
(b) Polarimeter
(c) Calorimeter
(d) Colorimeter
76. The mirrors used as rear-view mirrors in vehicles are
(a) concave
(b) convex
(c) cylindrical
(d) plane
77. Which one of the following waves is used for detecting forgery in currency notes?
(a) Ultraviolet waves
(b) Infrared waves
(c) Radio waves
(d) Microwaves
78. The majority charge carriers in a p-type semiconductor are
(a) free electrons
(b) conduction electrons
(c) ions
(d) holes
79. The ionization energy of hydrogen atom in the ground state is
(a) 13.6 MeV
(b) 13.6 eV
(c) 13.6 Joule
(d) Zero
80. When pure water boils vigorously, the bubbles that rise to the surface are composed primarily of
(a) air
(b) hydrogen
(c) hydrogen and oxygen
(d) water vapour
81. Which compound when dissolved in water conducts electricity and forms a basic solution?
(a) HCl
(b) $\mathrm{CH}_{3} \mathrm{COOH}$
(c) $\mathrm{CH}_{3} \mathrm{OH}$
(d) NaOH
82. The principal use of hydrofluoric acid is
(a) in etching glass
(b) as a bleaching agent
(c) as an extremely strong oxidizing agent
(d) in the preparation of strong fluorine compounds
83. The species that has the same number of electrons as ${ }_{16}^{32} \mathrm{~S} \mathrm{Cl}$ is
(a) ${ }_{16}^{32} \mathrm{~S}$
(b) ${ }_{16}^{34} \mathrm{~S}^{+}$
(c) ${ }_{18}^{40} \mathrm{Ar}^{+}$
(d) ${ }_{16}^{35} S^{2}$
84. The compound $\mathrm{CgH}_{12} \mathrm{O}_{4}$ contains
(a) 22 atoms per mole
(b) twice the mass percent of H as compared to the mass percent of C
(c) six times the mass percent of C as compared to the mass percent of H
(d) thrice the mass percent of H as compared to the mass percent of O
85. The proposition 'equal volumes of different gases contain equal numbers of molecules at the same temperature and pressure' is known as
(a) Avogadro's hypothesis
(b) Gay-Lussac's hypothesis
(c) Planck's hypothesis
(d) Kirchhoff's theory
86. Which one of the following statements about the Ilbert Bill is correct?
(a) It proposed that the Indian magistrates would try Europeans in criminal cases.
(b) It allowed Indians to file criminal cases against Europeans.
(c) It authorized Indian ICS officers to try Europeans in courts.
(d) It was an agitation led by Ilbert in support of the nationalists.
87. Who among the following can attend the meetings of both Houses of Parliament while not being member of either House?
(a) The Solicitor General of India
(b) The Vice-President of India
(c) The Comptroller and Auditor General of India
(d) The attorney General of India
88. Who among the following was believed to be a leader of the Sanyasis and Fakirs conspiring against the British in 1857?
(a) Mangal Pandey
(b) Bahadur Shah II
(c) Queen Zeenat Mahal
(d) Nana Sahib
89. Who among the following was the founder of the Avadh Kingdom in the $18^{\text {th }}$ century?
(a) Murshid Quli Khan
(b) Saadat Khan
(c) Alivardi Khan
(d) Sarfaraz Khan
90. Who among the following was the founder of the Young Bengal Movement?
(a) Henry Vivian Derozio
(b) David Hare
(c) Dwarkanath Tagore
(d) Prasanna Kumar Tagore
91. Which one of the following statements about the Quit India Movement is correct?
(a) It broke out in August 1942.
(b) Ahmedabad Textile Mills went on strike for more than 3 months.
(c) Muslim League and Hindu Mahasabha actively participated in the movement.
(d) Communist Party did not support the movement.
92. Who among the following is the winner of the Singapore Open Superseries Badminton Men's Singles title 2017?
(a) Kidambi Srikanth
(b) Lin Dan
(c) B. Sai Praneeth
(d) Kento Momota
93. Koradi Thermal Power Station is located in
(a) Nagpur
(b) Raipur
(c) Mumbai
(d) Secunderabad
94. Which one of the following is the theme of the International Day for Monuments and Sites (World Heritage Day) 2017?
(a) The Heritage of Sport
(b) Cultural Heritage and Sustainable Tourism
(c) Past and Present Heritage
(d) Heritage and Science
95. In April 2017, USA dropped MOAB (Massive Ordinance Air Blast popularly known as the Mother of All Bombs) in the suspected hideouts of militants in which one of the following countries?
(a) Iran
(b) Syria
(c) Afghanistan
(d) Somalia
96. Who among the following is the Chairman of the Interdisciplinary Committee constituted recently by the Government of India to examine framework for virtual currencies?
(a) Secretary, Department of Financial Services
(b) Special Secretary, Department of Revenue
(c) Special Secretary, Department of Economic Affairs
(d) Deputy Governor, Reserve Bank of India
97. SAMPADA scheme is being implemented by the Ministry of
(a) Finance
(b) Housing and Urban Affairs
(c) Food Processing Industries
(d) Earth Sciences
98. The shortest day length that occurs in the hemisphere is on
(a) $21^{\text {st }}$ March
(b) $23^{\text {rd }}$ September
(c) $22^{\text {nd }}$ November
(d) $22^{\text {nd }}$ December
99. The Indian Railways have gone in for qualitative improvements since independence. Which of the following have taken place in recent years?

1. gauge conversion
2. track electrification
3. automatic signals

Select the correct answer using the codes given below:
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2, and 3
100. In India, maximum amount of rainfall is received from
(a) Western Disturbances
(b) Northeast Monsoon
(c) Southwest Monsoon
(d) Retreating Monsoon
101. Which set of the following biosphere reserves in India is included in the World Network of Biosphere Reserves?
(a) Gulf of Mannar, Nokrek, Panchmarhi and Simlipal
(b) Gulf of Mannar, Kanchanjunga, Nokrerk, and Seshachalam
(c) Nilgai, Nokrek, Panchmarhi, and Panna
(d) Nilgiri, Nokrek, Panchmarhi, and Seshachalam
102.

Which of the following statements about magnetite ore of iron is/are correct?

1. It is known as black ore.
2. It contains 60% to 70% of pure iron
3. It possesses magnetic properties

Select the correct answer using the code given below:
(a) 1 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2, and 3
103. Which one of the following vitamins has a role in blood clotting?
(a) Vitamin A
(b) Vitamin D
(c) Vitamin E
(d) Vitamin K
104. The term 'Probiotic' is applied to
(a) organic food
(b) antacid
(c) antibiotic
(d) live microbial food supplement
105. Which one of the following microbes causes acidification and curding of milk?
(a) lactic acid bacillus
(b) Clostridium botulinum
(c) Vibrio choleras
(d) Saccharomyces cerevisiae
106. Who among the following shared Nobel Prize in 1962 along with Francis Crick and James

Watson for their discoveries concerning the molecular structure of nucleic acids?
(a) Erwin Chargaff
(b) Maurice Hugh Frederick Wilkins
(c) Rosalind Franklin
(d) Phoebus Levene
107. Water boils at a lower temperature at high altitudes because
(a) the air pressure is less
(b) outside temperature is less
(c) latent heat is less
(d) none of the above
108. Concave mirror is used in headlights of vehicles because it
(a) focuses light from the bulb onto nearby vehicles
(b) sends parallel rays
(c) fits well into the shape of the headlight
(d) is cheaper than other mirrors
109. If some object is weighed when submerged in water, what will happen to its weight compared to its weight in air?
(a) increase
(b) decrease
(c) remain exactly the same
(d) increase or decrease, cannot be specified
110. Light year is a measure of
(a) time
(b) distance
(c) total amount of light falling on the Earth in a year
(d) average intensity of light falling on the Earth in a year
111. Which one of the following statements about a satellite orbiting around the Earth is correct?
(a) Satellite is kept in orbit by remote control from the ground station.
(b) Satellite is kept in orbit by retro-rocket and solar energy keeps it moving around the Earth.
(c) Satellite requires energy from solar panels and solid fuels for orbiting.
(d) Satellite does not require any energy for orbiting.
112. Which one of the following statements about energy is correct?
(a) Energy can be created as well as destroyed.
(b) Energy can be created but not destroyed.
(c) Energy can neither be created nor destroyed.
(d) Energy cannot be created but can be destroyed.
113. Step-up transformers are used for
(a) increasing electrical power
(b) decreasing electrical power
(c) decreasing voltage
(d) increasing voltage
114. Which among the following waves carries the maximum energy per photon?
(a) X-rays
(b) Radio waves
(c) Light waves
(d) Microwave
115. How much CO_{2} is produced on heating 1 kg of carbon?
(a) $11 / 3 \mathrm{~kg}$
(b) $3 / 11 \mathrm{~kg}$
(c) $4 / 3 \mathrm{~kg}$
(d) $3 / 4 \mathrm{~kg}$
116. Zinc is used to protect iron from corrosion because zinc is
(a) more electropositive than iron
(b) cheaper than iron
(c) a bluish white metal
(d) a good conductor of heat and electricity
117. Which one of the following gases is placed second in respect of abundance in the Earth's atmosphere?
(a) oxygen
(b) hydrogen
(c) nitrogen
(d) carbon dioxide
118. Which one of the following is a chemical change?
(a) cutting of hair
(b) graying of hair naturally
(c) swelling of resin in water
(d) cutting of fruit
119. Which one of the following chemicals is used as washing soda?
(a) calcium carbonate
(b) calcium bicarbonate
(c) sodium carbonate
(d) sodium bicarbonate
120. Why is potassium permanganate used for purifying drinking water?
(a) it kills germs
(b) it dissolves the impurities
(c) it is a reducing agent
(d) it is an oxidizing agent
121. Consider the following movements:

1. Moplah Rebellion
2. Bardoli Satyagraha
3. Champaran Satyagraha
4. Salt Satyagraha

Which one of the following is the correct chronological order of the above in ascending order?
(a) 1-3-4-2
(b) $3-1-2-4$
(c) 2-3-1-4
(d) 4-2-1-3
122. Which one of the following travelogues has given an insight on the reign of Muhammad Bin Tughlaq?
(a) Ibn Battuta's Rihla
(b) Francois Bernier's Travels in the Mogul Empire
(c) Niccolao Manucci's Storia do Mogor
(d) Tavernier's Travels in India
123. Which one of the following was not a Chishti Sufi saint?
(a) Khwaja Moinnudin
(b) Baba Fariduddin Ganj-i-Shakar
(c) Nizamuddin Auliya
(d) Shaikh Bahauddin Zakariya
124. In April 2017, India celebrated 100 years
of Mahatma Gandhi's
(a) Satyagraha in Kheda
(b) Dandi March
(c) Satyagraha in Champaran
(d) Return from South Africa
125. A rainbow is produced due to which one of the following phenomena?
(a) Dispersion of light
(b) Interference of light
(c) Diffraction of light
(d) Scattering of light by atmospheric dust
126. Bats detect obstacles in their path by receiving the reflected
(a) infrasonic waves
(b) ultrasonic waves
(c) radio waves
(d) microwaves
127. The statement that 'heat cannot flow by itself from a body at a lower temperature to a body at a higher temperature' is known as
(a) Zeroth law of thermodynamics
(b) First law of thermodynamics
(c) Second law of thermodynamics
(d) Third law of thermodynamics
128. Which one of the following waves does not belong to the category of the other three?
(a) X-rays
(b) microwaves
(c) radio waves
(d) soundwaves
129. Which of the following statements is not correct?
(a) Human eye is a refracting system containing a diverging lens.
(b) The retina of the human eye contains millions of light sensitive cells called rods and cones which concert the light into electrical messages.
(c) Every image that is focused on the retina is upside down.
(d) We need both eyes to judge the relative positions of objects accurately.
130. Which one of the following statements is not correct?
(a) Ultrasonic waves cannot get reflected, refracted, or absorbed.
(b) Ultrasonic waves are used to detect the presence of defects like cracks, porosity, etc. in the internal structure of common structure materials.
(c) Ultrasonic waves can be used for making holes in very hard materials like diamond.
(d) Ultrasonic waves cannot travel through vacuum.
131. According to the Travel and Tourism Competitiveness Index (TTCI) 2017 released by the World Economic Forum, among the 136 economies across the world, India ranked
(a) $50^{\text {th }}$
(b) $40^{\text {th }}$
(c) 30^{th}
(d) 20^{th}
132. Which one of the following is the theme of the World Health Day 2017 celebrated by the World Health Organization?
(a) diabetes
(b) food safety
(c) Depression: Let's Talk
(d) Ageing and Health
133. Which one of the following ministries has launched a new programme on Interdisciplinary Cyber Physical Systems (ICPS) foster and promote R\&D?
(a) Ministry of Earth Sciences
(b) Ministry of Science and Technology
(c) Ministry of Information and Broadcasting
(d) Ministry of New and Renewable Energy
134. Consider the following statements about the Nagara style of temple architecture:

1. This style of temples is commonly found in the areas between Himalayas and Vindhyas.
2. The most striking feature of this style is its pyramidal shikhara.
Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(c) both 1 and 2
(d) neither 1 nor 2
3. Ashoka's connection with Buddhism is evident from which one of the following edicts?
(a) Major Rock Edict 13
(b) Rock Edict 6
(c) Minor Rock Edict 1
(d) Pillar Edict 4
4. The Cabinet Mission Plan for India
envisaged a
(a) federation
(b) confederation
(c) unitary form of government
(d) union of states
5. The creation of the institution or Lokpal was first recommended by
(a) Law Commission
(b) Santhanam Committee
(c) Shah Commission
(d) Administrative Reforms Commission
6. Which one of the following is a cause of acid rains?
(a) ozone
(b) ammonia
(c) sulfur dioxide
(d) carbon monoxide
7. The desirable pH for drinking water is
(a) 6.5 to 8.5
(b) 5.0 to 6.5
(c) 6.5 to 7.0
(d) 7.0 to 8.5
8. Consider the following reaction:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Which of the following about the reaction given above is/are correct?

1. Carbon is oxidized.
2. Hydrogen is oxidized.
3. Hydrogen is reduced.
4. Carbon is reduced.

Select the correct answer using the code given below:
(a) 1 only
(b) 1 and 2 only
(c) 2 and 3 only
(d) 2 and 4 only
141. Sunrise in eastern Arunachal Pradesh would be about how many hours before the sunrise in western Gujarat?
(a) one hour
(b) two hours
(c) three hours
(d) four hours
142. Consider the following states of India in terms of percentage of forest area in relation to the total area of the state:

1. Karnataka
2. Odisha
3. Kerala
4. Andhra Pradesh

Which of the following is the correct descending order?
(a) 1-2-4-3
(b) 3-1-2-4
(c) 3-2-1-4
(d) 2-3-1-4
143. Which one of the following states in India has the longest coastline?
(a) Odisha
(b) Tamil Nadu
(c) Karnataka
(d) West Bengal
144. Which one of the following states in India has the largest area under forest cover?
(a) Maharashtra
(b) Chhattishgarh
(c) Madhya Pradesh
(d) Andhra Pradesh
145. Which one of the following is not an igneous rock?
(a) gabbro
(b) granite
(c) dolomite
(d) basalt
146. The Coriolis effect is the result of
(a) pressure gradient
(b) earth's axis of inclination
(c) earth's rotation
(d) earth's revolution
147. Where is Mekong Delta located?
(a) Thailand
(b) Cambodia
(c) Myanmar
(d) Vietnam
148. Which one of the following pairs of rivers and tributaries is not correctly matched?
(a) Godavari: Indravati
(b) Ganga: Penganga
(c) Krishna: Bhima
(d) Luni: Sukri
149. Consider the following characteristics of a tropical cyclone:

1. A warm sea temperature of $>26^{\circ} \mathrm{C}$
2. High relative humidity of atmosphere at a height of $>700 \mathrm{~m}$
3. Atmospheric instability

The above-mentioned characteristics are associated with which one of the following cycles of its development?
(a) formulation and initial stage
(b) modification stage
(c) full maturity
(d) decay
150. In the Mesopotamian records, which one of the following terms was used for the Indus Valley (Harappans)?
(a) Dilmun
(b) Meluha
(c) Magan
(d) Failaka

General Ability Test NDA 22017 Answer Keys

ENGLISH:

1	D	2	C	3	C	4	D	5	B	6	B	7	C	8	A	9	D	10	B
11	B	12	D	13	A	14	C	15	C	16	D	17	B	18	C	19	D	20	B
21	B	22	C	23	C	24	A	25	B	26	C	27	A	28	B	29	B	30	B
31	B	32	C	33	C	34	C	35	C	36	C	37	A	38	D	39	B	40	D
41	A	42	B	43	B	44	B	45	B	46	A	47	D	48	C	49	B	50	D

GENERAL STUDIES:

51	C	52	C	53	C	54	C	55	C	56	B	57	B	58	D	59	B	60	B
61	B	62	C	63	B	64	C	65	A	66	B	67	C	68	B	69	A	70	B
71	C	72	D	73	B	74	B	75	A	76	B	77	A	78	D	79	B	80	C
81	D	82	A	83	C	84	C	85	A	86	A	87	D	88	A	89	B	90	A
91	C	92	C	93	A	94	A	95	C	96	C	97	C	98	D	99	A	100	C
101	A	102	C	103	D	104	D	105	A	106	B	107	A	108	B	109	B	110	B
111	D	112	C	113	D	114	D	115	A	116	A	117	A	118	B	119	C	120	D
121	B	122	A	123	D	124	C	125	A	126	B	127	C	128	D	129	A	130	D
131	B	132	C	133	B	134	C	135	A	136	D	137	D	138	C	139	C	140	A
141	B	142	A	143	C	144	B	145	C	146	C	147	D	148	B	149	A	150	B

Mathematics NDA 12017 Question Paper

1. The sum of the roots of the equation $x^{2}+b x+c=0$ (where b and c are non-zero) is equal to the sum of the recipients of their squares. Then, $\frac{1}{c}, b, \frac{c}{b}$ are in
(a) $A P$
(b) GP
(c) HP
(d) None of the above
2. The sum of the roots of the equation $a x^{2}+x+c=0$ (where a and c are non-zero) is equal to the sum of the reciprocals of their squares. Then $a, c a^{2}, c^{2}$ are in
(a) $A P$
(b) GP
(c) HP
(d) None of the above
3. The value of
$[C(7,0)+C(7,1)]+[C(7,1)+C(7,2)]+$ $\cdots+[C(7,6)+C(7,7)]$ is
(a) 254
(b) 255
(c) 256
(d) 257
4. The number of different words (eight-letter words) ending and beginning with a consonant which can be made out of the letters of the word 'EQUATION' is
(a) 5200
(b) 4320
(c) 3000
(d) 2160
5. The fifth term of an AP of n terms, whose sum is $n^{2}+n$, is
(a) 5
(b) 7
(c) 8
(d) 15
6. The sum of all the two-digit odd numbers is
(a) 2475
(b) 2530
(c) 4905
(d) $\frac{6}{n-5}$
7. If $A=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and $\operatorname{det}\left(A^{3}\right)=125$, then α is equal to
(a) ± 1
(b) ± 2
(c) ± 3
(d) ± 5
8. If B is a non-singular matrix and A is a square matrix, then the value of $\operatorname{det}\left(B^{-1} A B\right)$ is equal to
(a) $\operatorname{det}(B)$
(b) $\operatorname{det}(A)$
(c) $\operatorname{det}\left(B^{-1}\right)$
(d) $\operatorname{det}\left(A^{-1}\right)$
9. If $a \neq b \neq c$, then one value of x which satisfies the equation

$$
\left|\begin{array}{ccc}
0 & x-a & x-b \\
x+a & 0 & x-c \\
x+b & x+c & 0
\end{array}\right|=0
$$

Is given by
(a) a
(b) b
(c) c
(d) 0
15. If $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ then what is $A A^{T}$ equal to (where A^{T} is the transpose of A)?
(a) Null matrix
(b) Identity matrix
(c) A
(d) -A
16. What is the value of $\tan 18^{\circ}$?
(a) $\frac{\sqrt{5}-1}{\sqrt{10+2 \sqrt{5}}}$
(b) $\frac{\sqrt{5}-1}{\sqrt{10+\sqrt{5}}}$
(c) $\frac{\sqrt{10+2 \sqrt{5}}}{\sqrt{5}-1}$
(d) $\frac{\sqrt{10+\sqrt{5}}}{\sqrt{5}-1}$
17. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be positive real numbers such that x, y, z are in GP and $\tan ^{-1} x, \tan ^{-1} y$ and $\tan ^{-1} z$ are in AP. Then which one of the following is correct?
(a) $x=y=z$
(b) $x z=1$
(c) $x \neq y$ and $y=z$
(d) $x=y$ and $y \neq z$
18. If $\tan (\alpha+\beta)=2$ and $\tan (\alpha-\beta)=1$, then $\tan (2 \alpha)$ is equal to
(a) -3
(b) -2
(c) $-\frac{1}{3}$
(d) 1
19. Consider the following for triangle $A B C$:

1. $\sin \left(\frac{B+C}{2}\right)=\cos \left(\frac{A}{2}\right)$
2. $\tan \left(\frac{B+C}{2}\right)=\cot \left(\frac{A}{2}\right)$
3. $\sin (B+C)=\cos A$
4. $\tan (B-C)=-\cot A$

Which of the above are correct?
(a) 1 and 3
(b) 1 and 2
(c) 1 and 4
(d) 2 and 3
20. If $\sec \theta-\operatorname{cosec} \theta=\frac{4}{3}$, then what is ($\sin \theta-\cos \theta$) equal to?
(a) -2 only
(b) $\frac{1}{2}$ only
(c) Both -2 and $\frac{1}{2}$
(d) Neither $\frac{1}{2}$ nor - 2
21. If a vertex of a triangle is $(1,1)$ and the midpoints of two sides of the triangle through this vertex are $(-1,2)$ and $(3,2)$, then the centroid of the triangle is
(a) $\left(-\frac{1}{3}, \frac{7}{3}\right)$
(b) $\left(-1, \frac{7}{3}\right)$
(c) $\left(\frac{1}{3}, \frac{7}{3}\right)$
(c) $1: 2$
(d) $\left(1, \frac{7}{3}\right)$
22. The incentre of the triangle with vertices $A(1, \sqrt{3}), B(0,0)$ and $C(2,0)$ is
(a) $\left(1, \frac{\sqrt{3}}{2}\right)$
(b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
(c) $\left(\frac{2}{3}\right), \frac{\sqrt{3}}{2}$
(d) $\left(1, \frac{1}{\sqrt{3}}\right)$
23. If the three consecutive vertices of a parallelogram are $(-2,-1),(1,0)$ and $(4,3)$, then what are the coordinates of the fourth vertex?
(a) $(1,2)$
(b) $(1,0)$
(c) $(0,0)$
(d) $(1,-1)$
24. The two circles $x^{2}+y^{2}=r^{2}$ and $x^{2}+y^{2}-10 x+16=0$ intersect at two distinct points. Then which one of the following is correct?
(a) $2<r<8$
(b) $r=2$ or $r=8$
(c) $r<2$
(d) $r>2$
25. What is the equation of the circle which passes through the points $(3,-2)$ and $(-2,0)$ and having its centre on the line $2 x-y-3=0$?
(a) $x^{2}+y^{2}+3 x+2=0$
(b) $x^{2}+y^{2}+3 x+12 y+2=0$
(c) $x^{2}+y^{2}+2 x=0$
(d) $x^{2}+y^{2}=5$
26. What is the ratio in which the point $C=\left(-\frac{2}{7},-\frac{20}{7}\right)$ divides the line joining the points $A(-2,-2)$ and $B(2,-4)$?
(a) $1: 3$
(b) 3:4
(d) $2: 3$
27. What is the equation of the ellipse having foci $(\pm 2,0)$ and the eccentricity $\frac{1}{4}$?
(a) $\frac{x^{2}}{64}+\frac{y^{2}}{60}=1$
(b) $\frac{x^{2}}{60}+\frac{y^{2}}{64}=1$
(c) $\frac{x^{2}}{20}+\frac{y^{2}}{24}=1$
(d) $\frac{x^{2}}{24}+\frac{y^{2}}{20}=1$
28. What is the equation of the straight line parallel to $2 x+3 y+1=0$ and passes through the point $(-1,2)$?
(a) $2 x+3 y-4=0$
(b) $2 x+3 y-5=0$
(c) $x+y-1=0$
(d) $3 x-2 y+7=0$
29. What is the acute angle between the pair of straight lines $\sqrt{2} x+\sqrt{3} y=1$ and
$\sqrt{3} x+2 y=2$?
(a) $\tan ^{-1}\left(\frac{1}{2 \sqrt{6}}\right)$
(b) $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(c) $\tan ^{-1}(3)$
(d) $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
30. If the centroid of a triangle formed by $(7, x),(y,-6)$ and $(9,10)$ is $(6,3)$, then the values of x and y are respectively
(a) 5, 2
(b) 2,5
(c) 1,0
(d) 0,0
31. Let S be the set of all persons living in Delhi. We say that x, y in S are related if they were born in Delhi on the same day. Which one of the following is correct?
(a) The relation is an equivalent relation.
(b) The relation is not reflexive but it is symmetric and transitive.
(c) The relation is not symmetric but is reflexive and transitive.
(d) The relation is not transitive but it is reflexive and symmetric.
32. Let $A=\{1,2,3,4,5,6,7,8,9,10\}$. Then the number of subsets of A containing two or three elements is
(a) 45
(b) 120
(c) 165
(d) 330
33. The value of
$i^{2 n}+i^{2 n+1}+i^{2 n+2}+i^{2 n+3}$, where $i=\sqrt{-1}$, is
(a) 0
(b) 1
(c) i
(d) $-i$
34. If the difference between the roots of the equation $x^{2}+k x+1=0$ is strictly less than $\sqrt{5}$, where $|k| \geq 2$, then k can be any element of the interval
(a) $(-3,-2] \cup[2,3)$
(b) $(-3,3)$
(c) $[-3,-2] \cup[2,3]$
(d) None of the above
35. If the roots of the equation $x^{2}+p x+q=0$ are in the same ratio as those of the equation $x^{2}+l x+m=0$, then which one of the following is correct?
(a) $p^{2} m=l^{2} q$
(b) $m^{2} p=l^{2} q$
(c) $m^{2} p=q^{2} l$
(d) $m^{2} p^{2}=l^{2} q$
36. The value of

$$
\left(\frac{-1+i \sqrt{3}}{2}\right)^{n}+\left(\frac{-1-i \sqrt{3}}{2}\right)^{n}
$$

Where n is not a multiple of 3 and $i=\sqrt{-1}$, is
(a) 1
(b) -1
(c) i
(e) $-i$
37. Three-digit numbers are formed from the digits 1,2 , and 3 in such a way that the digits are not repeated. What is the sum of such three-digit numbers?
(a) 1233
(b) 1322
(c) 1323
(d) 1332
38. What is the sum of the series
$0.3+0.33+0.333+\cdots n$ terms?
(a) $\frac{1}{3}\left[n-\frac{1}{9}\left(1-\frac{1}{10^{n}}\right)\right]$
(b) $\frac{1}{3}\left[n-\frac{2}{9}\left(1-\frac{1}{10^{n}}\right)\right]$
(c) $\frac{1}{3}\left[n-\frac{1}{3}\left(1-\frac{1}{10^{n}}\right)\right]$
(d) $\frac{1}{3}\left[n-\frac{1}{9}\left(1+\frac{1}{10^{n}}\right)\right]$
39. If ω, ω^{2} are the cube roots of unity, then $(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\left(1+\omega+\omega^{2}\right) \quad$ is equal to
(a) -2
(b) -1
(c) 0
(d) 2
40. If the sum of m terms of an AP is n and the sum of n terms is m, then the sum of $(m+n)$ terms is
(a) $m n$
(b) $m+n$
(c) $2(m+n)$
(d) $-(m+2)$
41. The modulus and principal argument of the complex number

$$
\frac{1+2 i}{1-(1-i)^{2}}
$$

are respectively
(a) 1,0
(b) 1, 1
(c) 2,0
(d) 2,1
42. If the graph of a quadratic polynomial lies entirely above the x-axis, then which one of the following is correct?
(a) Both the roots are real
(b) One root is real and the other is complex
(c) Both the roots are complex
(d) Cannot say
43. If $|z+4| \leq 3$, then the maximum value of $|z+1|$ is
(a) 0
(b) 4
(c) 6
(d) 10
44. The number of roots of the equation $z^{2}=2 \bar{z}$ is
(a) 2
(b) 3
(c) 4
(d) Zero
45. If $\cot \alpha$ and $\cot \beta$ are the roots of the equation $x^{2}+b x+c=0$ with $b \neq 0$, then the value of $\cot (\alpha+\beta)$ is
(a) $\frac{c-1}{b}$
(b) $\frac{1-c}{b}$
(c) $\frac{b}{c-1}$
(d) $\frac{b}{1-c}$
46. The equations

$$
\begin{gathered}
x+2 y+3 z=1 \\
2 x+y+3 z=2 \\
5 x+5 y+9 z=4
\end{gathered}
$$

(a) Have the unique solution
(b) Have infinitely many solutions
(c) Are inconsistent
(d) None of the above
47. $A=\left[\begin{array}{cc}x+y & y \\ x & x-y\end{array}\right], B=\left[\begin{array}{c}3 \\ -2\end{array}\right]$, and $C=\left[\begin{array}{c}4 \\ -2\end{array}\right]$

If $A B=C$, then what is A^{2} equal to?
(a) $\left[\begin{array}{cc}4 & 8 \\ -4 & -16\end{array}\right]$
(b) $\left[\begin{array}{cc}4 & -4 \\ 8 & -16\end{array}\right]$
(c) $\left[\begin{array}{cc}-4 & -8 \\ 4 & 12\end{array}\right]$
(d) $\left[\begin{array}{cc}-4 & -8 \\ 8 & 12\end{array}\right]$
48. What is the value of the determinant

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+x y z & 1 \\
1 & 1 & 1+x y z
\end{array}\right| ?
$$

(a) $1+x+y+z$
(b) $2 x y z$
(c) $x^{2} y^{2} z^{2}$
(d) $2 x^{2} y^{2} z^{2}$
49. If $\left|\begin{array}{lll}x & y & 0 \\ 0 & x & y \\ y & 0 & x\end{array}\right|=0$, then which one of the following is correct?
(a) $\frac{x}{y}$ is one of the cube roots of unity
(b) x is one of the cube roots of unity
(c) y is one of the cube roots of unity
(d) $\frac{x}{y}$ is one of the cube roots of -1
50. Consider the set A of all matrices of order 3×3 with entries 0 or 1 only. Let B be the subset of A consisting of all matrices whose determinant is 1. Let C be the subset of A consisting of all matrices whose determinant is -1 . Then which one of the following is correct?
(a) C is empty
(b) B has as many elements as C
(c) $A=B \cup C$
(d) D has thrice as many elements as C
51. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then what is A^{3} equal to?

$$
\text { (a) }\left[\begin{array}{cc}
\cos 3 \theta & \sin 3 \theta \\
-\sin 3 \theta & \cos 3 \theta
\end{array}\right]
$$

56. From the top of a lighthouse, 100 m high, the angle of depression of a boat is $\tan ^{-1}\left(\frac{5}{12}\right)$. What is the distance between the boat and the lighthouse?
(a) 120 m
(b) 180 m
(c) 240 m
(d) 360 m
57. The maximum value of

$$
\sin \left(x+\frac{\pi}{6}\right)+\cos \left(x+\frac{\pi}{6}\right)
$$

in the interval $\left(0, \frac{\pi}{2}\right)$ is attained at
(a) $\frac{\pi}{12}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$
58. If $K=\sin \left(\frac{\pi}{18}\right) \sin \left(\frac{5 \pi}{18}\right) \sin \left(\frac{7 \pi}{18}\right)$, then what is the value of K ?
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) $\frac{1}{8}$
(d) $\frac{1}{16}$
59. The expression $\frac{\sin \alpha+\sin \beta}{\cos \alpha+\cos \beta}$ is equal to
(a) $\tan \left(\frac{\alpha+\beta}{2}\right)$
(b) $\cot \left(\frac{\alpha+\beta}{2}\right)$
(c) $\sin \left(\frac{\alpha+\beta}{2}\right)$
(d) $\cos \left(\frac{\alpha+\beta}{2}\right)$
(a) 0
(b) 1
(c) 2
(d) 4
55. What is $\frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}$ equal to?

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ?
$$

(a) 3×1
(b) 1×1
(c) 1×3
(d) 3×3
53. If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then the value of A^{2} is
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
54. If $A=\frac{3}{5}$, where $450^{\circ}<540^{\circ}$, then $\cos \frac{A}{2}$ is equal to
(a) $\frac{1}{\sqrt{10}}$
(b) $-\sqrt{\frac{3}{10}}$
(c) $\frac{\sqrt{3}}{\sqrt{10}}$
(d) None of the above
(d)
(c) 1
(d) 2
61. What is
$\int \frac{x^{e-1}+e^{x-1}}{x^{e}+e^{x}}$
equal to?
(a) $\frac{x^{2}}{2}+c$
(b) $\ln (x+e)+c$
(c) $\ln \left(x^{e}+e^{x}\right)+c$
(d) $\frac{1}{e} \ln \left(x^{e}+e^{x}\right)+c$
62. Let $f:[-6,6] \rightarrow R$ be defined by $f(x)=x^{2}-3$. Consider the following:

1. $(f \circ f \circ f)(-1)=(f \circ f \circ f)(1)$
2. $(f \circ f \circ f)(-1)-4(f \circ f \circ f)(1)$

$$
=(f \circ f)(0)
$$

Which of the above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
63. Let $f(x)=p x+q$ and $g(x)=m x+n$. Then $f(g(x))=g(f(x))$ is equivalent to
(a) $f(p)=g(m)$
(b) $f(q)=g(n)$
(c) $f(n)=g(q)$
(d) $f(m)=g(p)$
64. If $F(x)=\sqrt{9-x^{2}}$, then what is
$\lim _{x \rightarrow 1} \frac{F(x)-F(1)}{x-1}$
equal to?
(a) $-\frac{1}{4 \sqrt{2}}$
(b) $\frac{1}{8}$
(c) $-\frac{1}{2 \sqrt{2}}$
(d) $\frac{1}{2 \sqrt{2}}$
65. What is $\frac{d^{2} x}{d y^{2}}$ equal to?
(a) $-\left(\frac{d^{2} y}{d x^{2}}\right)^{-1}\left(\frac{d y}{d x}\right)^{-3}$
(b) $\left(\frac{d^{2} y}{d x^{2}}\right)^{-1}\left(\frac{d y}{d x}\right)^{-2}$
(c) $-\left(\frac{d^{2} y}{d x^{2}}\right)\left(\frac{d y}{d x}\right)^{-3}$
(d) $\left(\frac{d^{2} y}{d x^{2}}\right)^{-1}$
66. Let
$f(x): \begin{cases}x, & x \text { is rational } \\ 0, & x \text { is irrational }\end{cases}$
and
$g(x): \begin{cases}0, & x \text { is rational } \\ x, & x \text { is irrational }\end{cases}$

If $f: R \rightarrow R$ and $g: R \rightarrow R$, then $(f-g)$ is
(a) One-one and into
(b) Neither one-one not onto
(c) Many-one and onto
(d) One-one and onto
67. What is the length of the longest interval in which the function $f(x)=3 \sin x-4 \sin ^{3} x$ is increasing?
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{2}$
(c) $\frac{3 \pi}{2}$
(d) π
68. If $x d y=y(d x+y d y): y(1)=1$ and $y(x)>0$, then what is $y(-3)$ equal to?
(a) 3
(b) 2
(c) 1
(d) 0
69. What is the maximum value of the function $f(x)=4 \sin ^{2} x+1 ?$
(a) 5
(b) 3
(c) 2
(d) 1
70. Let $f(x)$ be an indefinite integral of $\sin ^{2} x$. Consider the following statements:

Statement 1:
The function $f(x)$ satisfies $f(x+\pi)=f(x)$ for all real x.

Statement 2:
$\sin ^{2}(x+\pi)=\sin ^{2} x$ for all real x.

Which one of the following is correct in respect of the above statements?
(a) Both statements are true and Statement 2 is the correct explanation of Statement 1
(b) Both statements are true but Statement 2 is not the correct explanation of Statement 1
(c) Statement 1 is true but Statement 2 is false
(d) Statement 1 is false but Statement 2 is true
71. What are the degree and order respectively of the differential equation

$$
y=x\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d x}{d y}\right)^{2} ?
$$

(a) 1, 2
(b) 2,1
(c) 1,4
(d) 4,1
72. What is the differential equation corresponding to $y^{2}-2 a y+x^{2}=a^{2}$ by eliminating a ?
(a) $\left(x^{2}-y^{2}\right) p^{2}-4 p x y-2 x^{2}=0$
(b) $\left(x^{2}-2 y^{2}\right) p^{2}+4 p x y-x^{2}=0$
(c) $\left(x^{2}+2 y^{2}\right) p^{2}-4 p x y-x^{2}=0$
(d) $\left(x^{2}+y^{2}\right) p^{2}-4 p x y+x^{2}=0$
73. What is the general solution of the differential equation
$y d x-\left(x+2 y^{2}\right) d y=0 ?$
(a) $x=y^{2}+c y$
(b) $x=2 c y^{2}$
(c) $x=2 c y^{2}+c y$
(d) None of the above
74. Let $f(x+y)=f(x) f(y)$ for all x and y. Then what is $f^{\prime}(5)$ equal to where $f^{\prime}(x)$ is the derivative of $f(x)$]?
(a) $f(5) f^{\prime}(0)$
(b) $f(5)-f^{\prime}(0)$
(c) $f(5) f(0)$
(d) $f(5)+f^{\prime}(0)$
75. If $f(x)$ and $g(x)$ are continuous functions satisfying $f(x)=f(a-x)$ and
$g(x)+g(a-x)=2$, then what is $\int_{0}^{a} f(x) g(x) d x$ equal to?
(a) $\int_{0}^{a} g(x) d x$
(b) $\int_{0}^{a} f(x) d x$
(c) $\int_{0}^{a} f(x) d x$
(d) $\int_{0}^{a} 0$
76. For two department events A and B, it is given that $P(A)=0 \cdot 2$ and $P(B)=0 \cdot 5$. If $A \subseteq B$, then the values of conditional probabilities $P(A \mid B)$ and $P(B \mid A)$ are respectively.
(a) $\frac{2}{5}, \frac{3}{5}$
(b) $\frac{2}{5}, 1$
(c) $1, \frac{2}{5}$
(d) Information is insufficient
77. A point is chosen at random inside a circle. What is the probability that the point is closer to the centre of the circle than to its boundary?
(a) $\frac{1}{5}$
(b) $\frac{1}{4}$
(c) $\frac{1}{3}$
(d) $\frac{1}{2}$
78. If two regression lines between height (x) and weight (y) are $4 y-15 x+410=0$ and $30 x-2 y-825=0$, then what will be the correlation coefficient between height and weight?
(a) $\frac{1}{3}$
(b) $\frac{1}{2}$
(c) $\frac{2}{3}$
(d) $\frac{3}{4}$
79. In an examination, 40% of candidates got second class. When the data are represented by a pie chart, what is the angle corresponding to second class?
(a) 40°
(b) 90°
(c) 144°
(d) 320°
80. Consider the following statements:

Statement 1:
Range is not a good measure of dispersion.

Statement 2:
Range is highly affected by the existence of extreme values.

Which of the following is correct in respect of the above statements?
(a) Both Statement 1 and Statement 2 are correct and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are correct but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is correct but Statement 2 is not correct.
(d) Statement 2 is correct but Statement 1 is not correct.
81. A card is drawn from a well-shuffled ordinary deck of 52 cards. What is the probability that it is an ace?
(a) $\frac{1}{13}$
(b) $\frac{2}{13}$
(c) $\frac{3}{13}$
(d) $\frac{1}{52}$
82. If the data are moderately non-symmetrical, then which one of the following empirical relationships is correct?
(a) $2 \times$ Standard deviation $=5 \times$ Mean deviation
(b) $5 \times$ Standard deviation $=2 \times$ Mean deviation
(c) $4 \times$ Standard deviation $=5 \times$ Mean deviation
(d) $5 \times$ Standard deviation $=4 \times$ Mean deviation
83. Data can be represented in which of the following forms?

1. Textual form
2. Tabular form
3. Graphical form

Select the correct answer using the code given below:
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2 and 3
84. For given statistical data, the graphs for less than ogive and more than ogive are drawn. If the point at which the two curves intersect is P, then abscissa of point P gives the value of which one of the following measures of central tendency?
(a) Median
(b) Mean
(c) Mode
(d) Geometric mean
85. Consider the following statements:

1. Two events are mutually exclusive if the occurrence of one event prevents the occurrence of the other.
2. The probability of the union of two mutually exclusive events is the sum of their individual probabilities.
Which of the above statements is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
3. If the regression coefficient of x and y and y on x are $-\frac{1}{2}$ and $-\frac{1}{8}$ respectively, then what is the correlation coefficient between x and y ?
(a) $-\frac{1}{4}$
(b) $-\frac{1}{16}$
(c) $\frac{1}{16}$
(d) $\frac{1}{4}$
4. A sample of 5 observations has mean 32 and median 33. Later it is found that an observation was recorded incorrectly as 40 instead of 35 . If we correct the data, then which one of the following is correct?
(a) The mean and median remain the same
(b) The median remains the same but the mean will decrease
(c) The mean and median both will decrease
(d) The mean remains the same but median will decrease
5. If two fair dice are thrown, then what is the probability that the sum is neither 8 nor 9 ?
(a) $\frac{1}{6}$
(b) $\frac{1}{4}$
(c) $\frac{3}{4}$
(d) $\frac{5}{6}$
6. Let A and B are two mutually exclusive events with $P(A)=\frac{1}{3}$ and $P(B)=\frac{1}{4}$. What is the value of $P(\bar{A} \cap \bar{B})$?
(a) $\frac{1}{6}$
(b) $\frac{1}{4}$
(c) $\frac{1}{3}$
(d) $\frac{5}{12}$
7. The mean and standard deviation of a binomial distribution are 12 and 2 respectively. What is the number of trials?
(a) 2
(b) 12
(c) 18
(d) 24
8. A straight line with direction cosines $\langle 0,1,0\rangle$ is
(a) Parallel to x-axis
(b) Parallel to y-axis
(c) Parallel to z-axis
(d) Equally inclined to all the axes
9. $(0,0,0),(a, 0,0),(0, b, 0)$ and $(0,0, c)$ are four distinct points. What are the coordinates of the point which is equidistant from the four points?
(a) $\left(\frac{a+b+c}{3}, \frac{a+b+c}{3}, \frac{a+b+c}{3}\right)$
(b) (a, b, c)
(c) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$
(d) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$
10. The points $P(3,2,4), Q(4,5,2), R(5,8,0)$ and $S(2,-1,6)$ are
(a) Vertices of a rhombus which is not a square
(b) Non-coplanar
(c) Collinear
(d) Coplanar but not collinear
11. The line passing through the points $(1,2,-1)$ and $(3,-1,2)$ meets the $y z$ plane at which one of the following points?
(a) $\left(0,-\frac{7}{2}, \frac{5}{2}\right)$
(b) $\left(0, \frac{7}{2}, \frac{1}{2}\right)$
(c) $\left(0,-\frac{7}{2},-\frac{5}{2}\right)$
(d) $\left(0, \frac{7}{2}-\frac{5}{2}\right)$
12. Under which one of the following conditions are the lines $x=a y+b ; z=c y+d$ and $x=e y+f ; \quad z=g y+h$ perpendicular?
(a) $a e+c g-1=0$
(b) $a e+b f-1=0$
(c) $a e+c g+1=0$
(d) $a g+c e+1=0$
13. If $\vec{a}=\hat{\imath}-\hat{\jmath}+\hat{k}, \vec{b}=2 \hat{\imath}+3 \hat{\jmath}+2 \hat{k}$ and $\vec{c}=\hat{\imath}+m \hat{\jmath}+n \hat{k}$ are three coplanar vectors and $|\vec{c}|=\sqrt{6}$, then which one of the following is correct?
(a) $m=2$ and $n= \pm 1$
(b) $m= \pm 2$ and $n=-1$
(c) $m=2$ and $n=-1$
(d) $m= \pm 2$ and $n=1$
14. Let $A B C D$ be a parallelogram whose diagonals intersect at P and let O be the origin. What is
$\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}$ equal to?
(a) $2 \overrightarrow{O P}$
(b) $4 \overrightarrow{O P}$
(c) $6 \overrightarrow{O P}$
(d) $8 \overrightarrow{O P}$
15. $A B C D$ is a quadrilateral whose diagonals are $A C$ and $B D$. Which one of the following is correct?
(a) $\overrightarrow{B A}+\overrightarrow{C D}=\overrightarrow{A C}+\overrightarrow{D B}$
(b) $\overrightarrow{B A}+\overrightarrow{C D}=\overrightarrow{B D}+\overrightarrow{C A}$
(c) $\overrightarrow{B A}+\overrightarrow{C D}=\overrightarrow{A C}+\overrightarrow{B D}$
(d) $\overrightarrow{B A}+\overrightarrow{C D}=\overrightarrow{B C}+\overrightarrow{A D}$
16. If $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$ then which one of the following is correct?
(a) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs and $|\vec{a}|=|\vec{c}|$ and $|\vec{b}|=1$
(b) $\vec{a}, \vec{b}, \vec{c}$ are non-orthogonal to each other
(c) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs but $|\vec{a}| \neq|\vec{c}|$
(d) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs but $|\vec{b}| \neq 1$
17. If $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}$, and
$\vec{b}=3 \hat{\imath}+2 \hat{\jmath}-\lambda \hat{k}$ are perpendicular, then what is the value of λ ?
(a) 2
(b) 3
(c) 4
(d) 5
18. What is $\lim _{x \rightarrow 0} \frac{e^{x}-(1+x)}{x^{2}}$ equal to?
(a) 0
(b) $\frac{1}{2}$
(c) 1
(d) 2
19. What is $\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{1+\cos \theta}$ equal to?
(a) $\frac{1}{2}$
(b) 1
(c) $\sqrt{3}$
(d) None of the above
20. What is $\int \frac{d x}{x\left(x^{7}+1\right)}$ equal to?
(a) $\frac{1}{2} \ln \left|\frac{x^{7}-1}{x^{7}+1}\right|=c$
(b) $\frac{1}{7} \ln \left|\frac{x^{7}+1}{x^{7}}\right|+c$
(c) $\ln \left|\frac{x^{7}-1}{7 x}\right|+c$
(d) $\frac{1}{7} \ln \left|\frac{x^{7}}{x^{7}+1}\right|+c$
21. The function $f: X \rightarrow Y$ defined by $f(x)=\cos x$, where $x \in X$, is one-one and onto if X and Y are respectively equal to
(a) $[0, \pi]$ and $[-1,1]$
(b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $[-1,1]$
(c) $[0, \pi]$ and $[-1,1]$
(d) $[0, \pi]$ and $[0,1]$
22. If $f(x)=\frac{x}{x-1}$, then what is $\frac{f(a)}{f(a+1)}$ equal to?
(a) $f\left(-\frac{a}{a+1}\right)$
(b) $f\left(a^{2}\right)$
(c) $f\left(\frac{1}{a}\right)$
(d) $f(-a)$
23.
24.
25.
26.
27. What is the derivative of $\log _{10}\left(5 x^{2}+3\right)$ with respect to x ?
(a) $\frac{x \log _{10} e}{5 x^{2}+3}$
(b) $\frac{2 x \log _{10} e}{5 x^{2}+3}$
(c) $\frac{10 x \log _{10} e}{5 x^{2}+3}$
(d) $\frac{10 x \log _{e} 10}{5 x^{2}+3}$
28. Let $f(a)=\frac{a-1}{a+1}$

Consider the following:

1. $f(2 a)=f(a)+1$
2. $f\left(\frac{1}{a}\right)=-f(a)$

Which of the above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
112. What is the maximum area of a triangle that can be inscribed in a circle of radius a ?
(a) $\frac{3 a^{2}}{4}$
(b) $\frac{a^{2}}{2}$
(c) $\frac{3 \sqrt{3} a^{2}}{4}$
(d) $\frac{\sqrt{3} a^{2}}{4}$
113. Let $f(x)=x+\frac{1}{x}$, where $x \in(0,1)$.

Then which one of the following is correct?
(a) $f(x)$ fluctuates in the interval
(b) $f(x)$ increases in the interval
(c) $f(x)$ decreases in the interval
(d) None of the above
114. Suppose the function $f(x)=x^{n}, n \neq 0$ is differentiable for all x. Then n can be any element of the interval
(a) $[1, \infty)$
(b) $(0, \infty)$
(c) $\left(\frac{1}{2}, \infty\right)$
(d) None of the above
115. What is $\int_{e^{-1}}^{e^{2}}\left|\frac{\ln x}{x}\right| d x$ equal to?
(a) $\frac{3}{2}$
(b) $\frac{5}{2}$
(c) 3
(d) 4
116. The variance of 20 observations is 5 . If each observation is multiplied by 3 , then what is the new variance of the resulting observations?
(a) 5
(b) 10
(c) 15
(d) 45
117. The mean of a group of 100 observations was found to be 20. Later it was found that four observations were incorrect, which were recorded $21,21,18$ and 20 . What is the mean if the incorrect observations are omitted?
(a) 18
(b) 20
(c) 21
(d) 22
118. A committee of two persons is constituted from two men and two women. What is the probability that the committee will have only women?
(a) $\frac{1}{6}$
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) $\frac{2}{3}$
119. A question is given to three students A, B and C whose chances of solving it are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. What is the probability that the question will be solved?
(a) $\frac{1}{24}$
(b) $\frac{1}{4}$
(c) $\frac{3}{4}$
(d) $\frac{23}{24}$
120. The mean weight of 150 students in a certain class is 60 kg . The mean weight of boys in the class is 70 kg and that of girls is 55 kg . What is the number of boys in the class?
(a) 50
(b) 55
(c) 60
(d) 100

1. $-b=\frac{b^{2}-2 c}{c^{2}}$
$\Rightarrow b c^{2}=b^{2}-2 c \Rightarrow b^{2}+b c^{2}$
$\Rightarrow \frac{2 c}{b}=b+c^{2} \Rightarrow \frac{2}{b}=\frac{b}{c}+c$
$\Rightarrow c, \frac{1}{b}, \frac{b}{c} \in A P \Rightarrow \frac{1}{c}, b, \frac{c}{b} \in H . P$
2.

$$
\begin{aligned}
& -\frac{1}{a}=\frac{\frac{1}{a^{2}}-\frac{2 c}{a}}{\frac{c^{2}}{c^{2}}} \\
& \Rightarrow-\frac{1}{a}=\frac{1-2 c a}{c^{2}} \\
& \Rightarrow a-2 c a^{2}=-c^{2} \\
& \Rightarrow 2 c a^{2}=a+c^{2} \\
& \Rightarrow a, c a^{2}, c^{2} \in A . P
\end{aligned}
$$

3. ${ }^{8} C_{1}+{ }^{8} C_{2}+\cdots{ }^{8} C_{7}$
$=2^{8}-2=254$
4. ${ }^{3} P_{2} \times 6!=6 \times 720=4320$
5. $a_{n}=2 n-3$
$\Rightarrow a_{5}=7$
6. $11+13+\cdots+99$
$=\frac{45}{2}(11+99)=45 \times 55=2475$
7.

$\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\cdots$
$=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+\cdots$
$=n-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right)$
$=n-\frac{\frac{1}{2}\left(1-\frac{1}{2^{n}}\right)}{\frac{1}{2}}=n-1+2^{-n}$
8. By property,
$(A-B) \cup A=A,(A-B) \cap B=\phi$ and $A \subseteq B \Rightarrow A \cup B=B$ are true.
9. $(1 p 101)^{2}+(10 q 1)_{2}=(100 r 00)_{2}$

Equating, $P=0, q=1, r=0$
10. $S=\left\{x: x^{2}+1=0, x \in R\right\}$
$\Rightarrow S=\phi$
11. ${ }^{n} C_{4} x^{n-4} y^{4}-{ }^{n} C_{5} x^{n-5} y^{5}=0$
$\Rightarrow{ }^{n} C_{4} x^{n-4} y^{4}={ }^{n} C_{5} x^{n-5} y^{5}$
$\Rightarrow \frac{x}{y}=\frac{{ }^{n} C_{5}}{{ }^{n} C_{4}}=\frac{n-4}{5}$
12. $A=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right] \Rightarrow A^{2}=\left[\begin{array}{cc}\alpha^{2}+4 & 4 \alpha \\ 4 \alpha & \alpha^{2}+4\end{array}\right]$
$\Rightarrow A^{3}=\left[\begin{array}{cc}\alpha^{3}+12 \alpha & 6 \alpha^{2}+8 \\ 6 \alpha^{2}+8 & \alpha^{3}+12 \alpha\end{array}\right]$
$\Rightarrow\left|A^{3}\right|=125$
$\Rightarrow\left(\alpha^{3}+12 \alpha\right)^{2}-\left(6 \alpha^{2}+8\right)^{2}=125$
putting $\alpha= \pm 3,(63)^{2}-(62)^{2}=125$ satisfied.
13. $\left|B^{-1} A B\right|=\left|B^{-1}\right||A||B|$

$$
=\frac{1}{|B|}|A||B|=|A|
$$

14. Putting $x=0$
$\left|\begin{array}{ccc}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right|$ is a skew-symmetric matrix of odd order whose determinant value is zero.
15. $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
$A A^{T}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=$ Identity matrix
16.

$$
\tan 18^{\circ}=\frac{\sqrt{5}-1}{\sqrt{10+2 \sqrt{5}}} \text { (Result) }
$$

17. $2 \tan ^{-1} y=\tan ^{-1} x+\tan ^{-1} z$
$\Rightarrow \tan ^{-1} \frac{2 y}{1-y^{2}}=\tan ^{-1} \frac{x+z}{1-x z}$
$\Rightarrow \frac{2 y}{1-y^{2}}=\frac{x+z}{1-x z}=\frac{x+z}{1-y^{2}}\left(\because y^{2}=x z\right)$
$\Rightarrow 2 y=x+z$
$\Rightarrow x, y, z \in A . P$
But $x, y, z \in G . P$ (given)
$\Rightarrow x=y=z$
18. $\tan 2 \alpha=\tan (\alpha+\beta+\alpha-\beta)$
$=\frac{\tan (a+\beta)+\tan (\alpha-\beta)}{1-\tan (a+\beta) \tan (\alpha-\beta)}=\frac{2+1}{1-2 \times 1}=\frac{3}{-1}=-3$
19. $A+B+C=\pi$
$\sin \left(\frac{B+C}{2}\right)=\sin \left(\frac{\pi}{2}-\frac{A}{2}\right)=\cos \frac{A}{2}$ (True)
$\tan \left(\frac{B+C}{2}\right)=\tan \left(\frac{\pi}{2}-\frac{A}{2}\right)=\cot \frac{A}{2}$ (True)
Statement 1 and 2 are true.
20. $\sin \theta \operatorname{cosec} \theta=\frac{4}{3}$
$\Rightarrow \frac{\sin \theta-\cos \theta}{\sin \theta \cos \theta}=\frac{4}{3}$
$\Rightarrow \frac{(\sin \theta-\cos \theta)^{2}}{(\sin \theta \cos \theta)^{2}}=\frac{16}{9}$
$\Rightarrow \frac{1-2 \sin \theta \cos \theta}{\sin ^{2} \theta \cos ^{2} \theta}=\frac{16}{9}$
Let $\sin \theta \cos \theta=x$
$\Rightarrow \frac{1-2 x}{x^{2}}=\frac{16}{9}$
$\Rightarrow 16 x^{2}+18 x-9=0$
$\Rightarrow(8 x-3)(2 x+3)=0$
$\Rightarrow x=\frac{3}{8}, x=\frac{3}{2}$
$\Rightarrow \sin \theta \cos \theta=\frac{3}{8}$
$\Rightarrow \sin \theta-\cos \theta=\frac{4}{3} \times \frac{3}{8}=\frac{1}{2}$
21. Centroid $=\left(1, \frac{7}{3}\right)$

22. $\triangle A B C$ is equilateral
23.
24.

25. $(h-3)^{2}+(2 h-1)^{2}=(h+2)^{2}+(2 h-3)^{2}$

$\Rightarrow h=-\frac{3}{2} \Rightarrow 2 h-3=-6$
$\therefore r^{2}=\frac{1}{4}+36$
Equation of circle is
$\left(x+\frac{3}{2}\right)^{2}+(y+6)^{2}=\frac{1}{4}+36$
$\Rightarrow x^{2}+y^{2}+3 x+12 y+2=0$
26.

$$
\begin{aligned}
\frac{2 k-2}{k+1} & =-\frac{2}{7} \\
& C\left(\frac{-2}{7}, \frac{-20}{7}\right)
\end{aligned}
$$

$\mathrm{A}(-2,2)$
$\Rightarrow 7(k-1)=-k-1$
$\Rightarrow 8 k=6 \Rightarrow k=\frac{3}{4}$ ratio $=3: 4$
27. $2=\frac{a}{4} \Rightarrow a=8$

$b^{2}=64-4=60$
Equation of ellipse is $\frac{x^{2}}{64}+\frac{y^{2}}{60}=1$
28. Let equation of line is $2 x+3 y+\lambda=0$
putting $(-1,2)$, we get $\lambda=-4$
\Rightarrow equation of line is $2 x+3 y-4=0$
29.
$\theta=\tan ^{-1}\left(\frac{\frac{-\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{2}}}{1+\left(\frac{-\sqrt{2}}{\sqrt{3}}\right)\left(\frac{-\sqrt{3}}{\sqrt{2}}\right)}\right)=\tan ^{-1}\left(\frac{1}{2 \sqrt{6}}\right)$
30.

$$
(y, 6)
$$

$(9,10)$

$$
16+y=18 \Rightarrow y=2
$$

Next, $x+4=9 \Rightarrow x=5$
$\therefore(x, y)=(5,2)$
31.
$R=\{(x, y): x$ and y were born in Delhi on same day $\}$
R is an equivalence relation
32. Required no. of subsects

$$
={ }^{10} C_{2}+{ }^{10} C_{3}=45+120=165
$$

33. $1^{2 n}+1^{2 n+1}+1^{2 n+2}+1^{2 n+3}=0$
34. $(\alpha-\beta)^{2}<5$
$\Rightarrow k^{2}-4<5 \Rightarrow k^{2}<9$
$\Rightarrow-3<k<3$
Next, $|k| \geq 2 \Rightarrow k \leq-2$ or $k \geq 2$
from both, $k \in(-3,-2] \cup[2,3)$
35. Let $\alpha, k \alpha$ be roots of $x^{2}+p x+q=0$
and $\beta, k \beta$ be roots of $x^{2}+\ell x+m=0$ Clearly,

$$
\frac{\alpha^{2}}{\beta^{2}}=\frac{p^{2}}{\ell^{2}}=\frac{q}{m} \Rightarrow p^{2} m=\ell^{2} q
$$

36.

$\left(\frac{-1+i \sqrt{3}}{2}\right)^{2}+\left(\frac{-1-i \sqrt{3}}{2}\right)^{2}=\omega^{2}+\omega^{2 n}=-1$
n is not multiple of 3
37. Sum $=12\left(10^{\circ}+10^{1}+10^{2}\right)$

$$
=111 \times 12=1332
$$

38. $0.3+0.33+0.333+$.....
$=\frac{3}{10}+\frac{33}{100}+\frac{333}{1000}+\cdots$
$=\frac{3}{9}\left[\frac{9}{10}+\frac{99}{100}+\frac{999}{1000}+\cdots\right]$
$=\frac{1}{3}\left[\left(1-\frac{1}{10}\right)+\left(1-\frac{1}{100}\right)+\left(1-\frac{1}{1000}\right)+\cdots\right]$
$=\frac{1}{3}\left[n-\frac{\frac{1}{10}\left(1-\frac{1}{10^{n}}\right)}{\frac{9}{10}}\right]=\frac{1}{3}\left[n-\frac{1}{9}\right]\left(1-\frac{1}{10^{n}}\right)$
39. $(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\left(1+\omega+\omega^{2}\right)=0$
40. In an A. P

$$
\text { If } S_{m}=n \text { and } S_{n}=m \text { then } S_{m+n}=-(m+n)
$$

41.

$\frac{1+2 i}{1-(1-i)^{2}}=\frac{1+2 i}{1-(-2 i)}=\frac{1+2 i}{1+2 i}=1$
Modulus $=1$, Argument $=0$
42. If graph of quadratic lies entirely above x-axis then $D>0$. So, both roots are complex.
43. $|z+1|=|z+4-3|$
$\leq|z+4|+|-3|$
maximum value of $|z+1|=6$
44. $z^{2}=2 \bar{z}$

Let $z=x+i y$
Now, $x^{2}-y^{2}+2 x y i=2 x-2 y i$
$\Rightarrow x=-1$ and $y= \pm \sqrt{3}$
So, $z=-1+\sqrt{3 i}$ and $z=-1-\sqrt{3 i}$ are two roots
45.

$$
\begin{aligned}
& \cot (\alpha+\beta)=\frac{\cot \alpha-\cot \beta-1}{\cot \beta+\cot \alpha} \\
& =\frac{c-1}{-b}=\frac{1-c}{b}
\end{aligned}
$$

46.

$\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{array}\right|=1(9-15)-2(18-15)+3(10-5)$
$=-6-6+15=3 \neq 0$
\Rightarrow system has unique solution.
47. $\left[\begin{array}{cc}x+y & y \\ x & x-y\end{array}\right]\left[\begin{array}{c}3 \\ -2\end{array}\right]=\left[\begin{array}{c}4 \\ -2\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}3 x+y \\ x+2 y\end{array}\right]=\left[\begin{array}{c}4 \\ -2\end{array}\right]$
solving we get, $x=2, y=-2$
$A=\left[\begin{array}{cc}x+y & y \\ x & x-y\end{array}\right]=\left[\begin{array}{cc}0 & -2 \\ 2 & 4\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}0 & -2 \\ 2 & 4\end{array}\right]\left[\begin{array}{cc}0 & -2 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}-4 & -8 \\ 8 & 12\end{array}\right]$
48. $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & x y z & 0 \\ 0 & 0 & x y z\end{array}\right|=x^{2} y^{2} z^{2}$
49. $x^{3}+y^{3}=0 \Rightarrow x^{2}-x y+y^{2}=0$
$\Rightarrow\left(\frac{x}{y}\right)^{2}-\frac{x}{y}+10=0, \frac{x}{y}=-1$
$\Rightarrow \frac{x}{y}$ is one of the cube roots of -1
50. By symmetry B has as many elements as C.
51. $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right] \\
& \Rightarrow A^{3}=\left[\begin{array}{cc}
\cos 3 \theta & \sin 3 \theta \\
-\sin 2 \theta & \cos 3 \theta
\end{array}\right]
\end{aligned}
$$

52. $(1 \times 3)(3 \times 3)(3 \times 1)$

$$
=(1 \times 1)
$$

53. $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow A^{4}=I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
54. $\sin A=\frac{3}{5}$
$\Rightarrow \cos A=-\frac{4}{5}(\because A$ lies in 2nd quadrant $)$
$\therefore \cos ^{2} \frac{A}{2}=\frac{1+\cos A}{2}=\frac{1}{10}$
$\Rightarrow \cos \frac{A}{2}=\frac{1}{\sqrt{10}}\left(\frac{A}{2}\right.$ lies in 1st quadrant $)$
55.

$$
\begin{aligned}
& \frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}} \\
& =\frac{2 \times 2\left[\frac{1}{2} \cos 10^{\circ}-\frac{\sqrt{3}}{2} \sin 10^{\circ}\right]}{2 \sin 10^{\circ} \cos 10^{\circ}} \\
& =4 \frac{\cos \left(60^{\circ}+18\right)}{\sin 20^{\circ}}=4 \frac{\cos 70^{\circ}}{\sin 20^{\circ}}=4
\end{aligned}
$$

56. $\tan \theta=\frac{5}{12}$
$\Rightarrow \frac{100}{x}=\frac{5}{12}$
$\Rightarrow x=240 \mathrm{~m}$

57.

$$
f(x)=\sin \left(x+\frac{\pi}{6}\right)
$$

$$
+\cos \left(x+\frac{\pi}{6}\right)=\sqrt{2} \sin \left(x+\frac{\pi}{6}+\frac{\pi}{4}\right)
$$

$f(x)$ is maximum when
$x+\frac{\pi}{6}+\frac{\pi}{4}=\frac{\pi}{2} \Rightarrow x=\frac{\pi}{12}$
58. $K=\sin 10^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ}$
$=\frac{1}{4} \sin 30^{\circ}=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$
59.
$\frac{\sin \alpha+\sin \beta}{\cos \alpha+\cos \beta}$
$=\frac{2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)}{2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)}$
$=\tan \left(\frac{\alpha+\beta}{2}\right)$
60.

$$
\begin{aligned}
& \frac{\sin (\theta+2 \alpha)}{\sin \theta}=\frac{1}{3} \\
& \Rightarrow \frac{\sin (\theta+2 \alpha)+\sin \theta}{\sin (\theta+2 \alpha)-\sin \theta}=\frac{4}{-2}=-2 \\
& \Rightarrow \frac{2 \sin (\theta+\alpha) \cos \alpha}{2 \cos (\theta+\alpha) \sin \alpha}=-2 \\
& \Rightarrow \frac{\tan (\theta+\alpha)}{\tan \alpha}=-2 \\
& \Rightarrow \tan (\theta+\alpha)+2 \tan \alpha=0
\end{aligned}
$$

61.

$$
\begin{aligned}
& \int \frac{x^{e-1}+e^{x-1}}{x^{e}+e^{x}} d x \\
& =\frac{1}{e} \int \frac{e x^{e-1}+e^{x}}{x^{e}+e^{x}} d x \\
& =\frac{1}{e} \log \left(x^{e}+e^{x}\right)+c
\end{aligned}
$$

62. $f(x)=x^{2}-3$
fo $f(x)=\left(x^{2}-3\right)^{2}-3=x^{4}-6 x^{2}+6$
f of of $f(x)=\left(x^{4}-6 x^{2}+6\right)^{2}-3$
$f \circ f \circ f(x)$ is even function
$\Rightarrow(f \circ f \circ f)(-1)=(f \circ f \circ f)(1)$
$\operatorname{Next}(f \circ f \circ f)(-1)-4(f \circ f o f)(1)$
$-3\{(f \circ f \circ f)(1)\}=(-3)(-2)=6$
$f o f(0)=6$
Both 1 and 2 are correct.
63. $p(m x+n)+q=m(p x+q)+n$
$\Rightarrow p n+q=q m+n$

$$
\Rightarrow f(n)=g(q)
$$

64.

$$
\begin{aligned}
& \operatorname{\mu m}_{x \rightarrow 1} \frac{F(x)-F(-1)}{x-1} \\
& =\left\{F^{\prime}(x)\right\}_{x=1}=\left(\frac{-2 x}{2 \sqrt{9-x^{2}}}\right)_{x=1}=\frac{-1}{2 \sqrt{2}}
\end{aligned}
$$

65.

$$
\begin{aligned}
& \frac{d^{2} x}{d y^{2}}=\frac{d}{d y}\left(\frac{1}{\left(\frac{d y}{d x}\right)}\right) \\
& =\frac{-\frac{d}{d y}\left(\frac{d y}{d x}\right)^{-}}{\left(\frac{d y}{d x}\right)^{2}}=\frac{-\frac{d}{d x}\left(\frac{d y}{d x}\right) \times \frac{d x}{d y}}{\left(\frac{d y}{d x}\right)^{2}} \\
& =\frac{d^{2} y}{d x^{2}}\left(\frac{d y}{d x}\right)^{-3}
\end{aligned}
$$

66. $(f-g)(x)=\left\{\begin{aligned} x, & x \in Q \\ -x, & x \in R-Q\end{aligned}\right.$

Clearly $f-g$ is one-one and onto
67. $f(x)=\sin 3 x$
$\sin 3 x$ is increasing in
$\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$
Interval length $=\frac{\pi}{3}$
68. $x d y=y d x+y^{2} d y$
$\Rightarrow \int \frac{y d x+x d y}{y^{2}}=-\int d y \Rightarrow-y=\frac{x}{y}+C$
$y(1)=1 \Rightarrow C=-2 \Rightarrow-y=\frac{x}{y}-2$
$\therefore y(-3)=3(\because y(x)>0)$
69. Maximum value $=4+1=5$
70.
$f(x)=\int \sin ^{2} x d x=\int\left(\frac{1-\cos 2 x}{2}\right) d x$
$=\frac{1}{2}\left[x-\frac{1}{2} \sin 2 x\right]+C$
$f(x+\pi) \neq f(x)(\because f(x)$ is not periodic $)$
Statement 1 false
Next, $\sin ^{2}(\pi+x)=\sin ^{2} x$
Statement 2 true
71.

$$
\begin{aligned}
& y=x\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{-2} \\
& \Rightarrow y\left(\frac{d y}{d x}\right)^{2}=x\left(\frac{d y}{d x}\right)^{4}+1
\end{aligned}
$$

order $=1$, degree $=4$
72. $y^{2}-2 a y+x^{2}=a^{2}$
$\Rightarrow 2 y \frac{d y}{d x}-2 a \frac{d y}{d x}+2 x=0 \Rightarrow \frac{y \frac{d y}{d x}+x}{\frac{d y}{d x}}=a$
$\Rightarrow \frac{p y+x}{p}=a \Rightarrow y^{2} \frac{-2 y(p y+x)}{p}+x^{2}=\left(\frac{p y+x}{p}\right)^{2}$
$\Rightarrow p^{2} y^{2}-2 p^{2} y^{2}-2 x y p+p^{2} x^{2}=p^{2} y^{2}+x^{2}+2 x y p$
$\Rightarrow-2 p^{2} y^{2}+p^{2} x^{2}-4 x y p-x^{2}=0$
$\Rightarrow p^{2}\left(x^{2}-2 y^{2}\right)-4 x y p-x^{2}=0$
73. $y d x=\left(x+2 y^{2}\right) d y$

$$
\begin{aligned}
& \Rightarrow \frac{d x}{x y}-\frac{x}{y}-2 y \\
& \text { I.F }=\int_{e}-\frac{1}{y} d y=-\frac{1}{y} \\
& \Rightarrow \frac{x}{y}=2 y+c \Rightarrow x=2 y^{2}+c y
\end{aligned}
$$

74. $f(x+y)=f(x) . f(y) \forall x, y \in R$

$$
\Rightarrow f(0+0)=f(0) . f(0) \Rightarrow\{f(0)\}^{2}-f(0)=0
$$

$$
\Rightarrow f(0)=1
$$

Next,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =f(x) \cdot \lim _{h \rightarrow 0} \frac{f(h)-1}{h} \\
& =f(x) \lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=f(x) \cdot f^{\prime}(o) \\
& \therefore f^{\prime}(5)=f(5) \cdot f^{\prime}(o)
\end{aligned}
$$

75.

$$
\begin{aligned}
& I=\int_{0}^{a} f(x) g(x) d x \\
& =\int_{0}^{a} f(a-x) \cdot g(a-x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{a} f(x)\{2-g(x)\} d x \\
& =\int_{0}^{a} 2 f(x) d x-\int_{0}^{a} f(x) \cdot g(x) d x \\
& \Rightarrow 2 I=2 \int_{0}^{a} f(x) d x \\
& \Rightarrow I=\int_{0}^{a} f(x) d x
\end{aligned}
$$

76. $A \underline{C} B \Rightarrow A \cap B=A$

$$
\begin{aligned}
& P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)}=\frac{0.2}{0.5}=\frac{2}{5} \\
& P(A / B)=\frac{P(A \cap B)}{P(A)}=\frac{P(A)}{P(A)}=1
\end{aligned}
$$

77. Required probability

$$
=\frac{\pi\left(\frac{r}{2}\right)^{2}}{\pi r^{2}}=\frac{1}{4}
$$

78.

$$
r=\sqrt{\frac{15}{4} \times \frac{2}{30}}=\frac{1}{2}
$$

79. Angle $=\frac{2}{5} \times 360^{\circ}=144^{\circ}$
80. It is a fundamental concept. So, options 'a' is correct.
81. $P($ ace $)=\frac{4}{52}=\frac{1}{13}$
82. S. $D=\frac{5}{4} M . D$. (formula)
83. Data can be represented in tabular and graphical form.
84. The abscissa of the point of intersection of less than and more than ogive is median.
85. Both statements are correct.
86. Result

$$
=\sqrt{\left(\frac{1}{2}\right) \times\left(-\frac{1}{8}\right)}=-\frac{1}{4}
$$

87. Median remains same but the mean will decrease.
88. Required probability

$$
=1-\frac{9}{36}=1-\frac{1}{4}=\frac{3}{4}
$$

89. $P(\bar{A} \cap \bar{B})=1-P(A \cup B)$
$=1-\left(\frac{1}{3}+\frac{1}{4}\right)=\frac{5}{12}$
90. $n p=12$ and $n p q=4$
$\Rightarrow q=\frac{4}{12}=\frac{1}{3} \Rightarrow p=\frac{2}{3}$
so,
$n \times \frac{2}{3}=12 \Rightarrow n=18$
91. Parallel to y-axis.
92. Let
$O(0,0,0) A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$.
$P\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$ is equidistant from $\mathrm{O}, \mathrm{A}, \mathrm{B}$ and C .
93. P, Q, R, S are collinear.
94. Let
$\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+1}{3}=\lambda$
$\Rightarrow x=2 \lambda+1, y=-3 \lambda+2, z=3 \lambda-1$
putting $x=0, \lambda=-\frac{1}{2}$
$\therefore y=\frac{7}{2}, z=\frac{5}{2}$ so, point
$\left(0, \frac{7}{2},-\frac{5}{2}\right)$
95.

$\frac{x-b}{a}=\frac{y-0}{1}=\frac{z-d}{c}$
$\frac{x-f}{e}=\frac{y-0}{1}=\frac{z-h}{g} \ldots$
(i)and (ii) are perpendicular
$\Rightarrow a e+1+c g=0$
96. $\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 3 & 2 \\ 1 & m & n\end{array}\right|=0$
$\Rightarrow 3 n-2 m+2 n-2+2 m-3=0$
$\Rightarrow n=1$
Next, $1+m^{2}+n^{2}=6 \Rightarrow m= \pm 2$
97. $\overrightarrow{O A}+\overrightarrow{O C}=2(\overrightarrow{O P})$.
$\overrightarrow{O B}+\overrightarrow{O D}=2(\overrightarrow{O P}) \ldots$ (2)
adding (1) and (2) we get,
$\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=4 \overrightarrow{O P}$
98.

$$
\begin{align*}
& \overrightarrow{B A}+\overrightarrow{A D}=\overrightarrow{B D} \tag{i}\\
& \overrightarrow{C D}+\overrightarrow{D A}+\overrightarrow{C A} \tag{ii}
\end{align*}
$$

adding (i) and (ii)
$\overrightarrow{B A}+\overrightarrow{C D}=\overrightarrow{B D}+\overrightarrow{C A}$
99. $\vec{a} \times \vec{b}=\vec{c} \Longrightarrow \vec{c}$ is perpendicular to both \vec{a} and \vec{b}
$\vec{b} \times \vec{c}=\vec{a} \Longrightarrow \vec{a}$ is perpendicular to both \vec{b} and \vec{c}
$\Rightarrow \vec{a}, \vec{b}, \vec{c}$ form an orthogonal system.
Next,
$|\vec{a} \times \vec{b}|=|\vec{c}| \Rightarrow|\vec{a}||\vec{b}| \sin 90^{\circ} .1=|\vec{c}|$
and $|\vec{b} \times \vec{c}|=\vec{a} \Rightarrow|\vec{b}||\vec{c}|=\sin 90^{\circ} .1=|\vec{a}|$
putting for $|\vec{c}|$, we get $|\vec{b}||\vec{a}||\vec{b}|=|\vec{a}| \Rightarrow|\vec{b}|=1$
and $|\vec{a}|=|\vec{c}|$
100.

$$
(2)(3)+(3)(2)-4 \lambda=0 \Rightarrow \lambda=3
$$

101.

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\left(e^{x}-(1+x)\right.}{x^{2}} \frac{\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots .\right)-(1+x)}{x^{2}}=\frac{1}{2!}=\frac{1}{2}
\end{aligned}
$$

102.

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \frac{1}{1+\cos \theta} d \theta \\
& =\int_{0}^{\pi / 2} \frac{1}{2 \cos ^{2} \frac{\theta}{2}} d \theta=\frac{1}{2} \int_{0}^{\pi / 2} \sec ^{2} \frac{\theta}{2} d \theta \\
& =\frac{1}{2} \times 2\left[\tan \frac{\theta}{2}\right]_{0}^{\pi / 2}=1
\end{aligned}
$$

103.

$$
\begin{aligned}
& \int \frac{1}{x\left(x^{7}+1\right)} d x \\
& =\frac{1}{7} \int \frac{7 x^{6}}{x^{7}\left(x^{7}+1\right)} d x \\
& \text { putting } x^{7}=t \\
& =\frac{1}{7} \int \frac{7 x^{6}}{t(t+1)} d t=\frac{1}{7} \int\left(\frac{1}{t}-\frac{1}{t+1}\right) d t \\
& =\frac{1}{7}[\log t-\log (t+1)]+c \\
& =\frac{1}{7} \log \left(\frac{t}{t+1}\right)+c=\frac{1}{7} \log \left(\frac{x^{7}}{x^{7}+1}\right)+c
\end{aligned}
$$

104. $f(x)=\cos x$ is bijective for domain $X=[0, \pi]$ and co-domain $Y=[-1,1]$.
105.

$$
\begin{gathered}
\frac{f(a)}{f(a+1)}=\frac{\frac{a}{a-1}}{\frac{a+1}{a}}=\frac{a}{a-1} \times \frac{a}{a+1}=\frac{a^{2}}{a^{2}-1} \\
=f\left(a^{2}\right)
\end{gathered}
$$

106.

$\log \left(\frac{d y}{d x}\right)=a \Rightarrow \frac{d y}{d x}=e^{a} \Rightarrow \int d y=\int e^{a} d x$ $\Rightarrow y=x e^{a}+c$
107.
$f(x)=\left\{\begin{array}{c}2 x+1,-3<x<-2 \\ x-1,-2 \leq x<0 \\ x+2,0 \leq x<1\end{array}\right.$
Here, $f\left(0^{-}\right)=-1$ and $f\left(0^{+}\right)=2$ clearly $f(x)$ is discontinuous at $x=0$ and continuous at all other points.
108. If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exists, then $\lim _{x \rightarrow a} f(x) \cdot g(x)$ exists. But if
$\lim _{x \rightarrow a} f(x) \cdot g(x)$ exists, then it is not necessary
that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exists.
109. If $f(x)=x^{2}(x-3)$ then
$f(-x)=x^{2}(-x-3) \neq f(x)$ or $-f(x)$
$\Rightarrow f(x)$ is neither even nor odd.
110.

$$
\begin{aligned}
& \frac{d}{d x} \log _{10}^{\left(5 x^{2}+3\right)} \\
& =\frac{1}{5 x^{2}+3} \times \log _{10}^{e} \times 10 x=\frac{10 x \log _{10}^{e}}{5 x^{2}+3}
\end{aligned}
$$

111.

$f(a)=\frac{a-1}{a+1}$
$f(2 a)=\frac{2 a-1}{2 a+1}$
$f(a)+1=\frac{a-1}{a+1}+1=\frac{2 a}{a+1}$
So, $f(2 a) \neq f(a)+1$
Next,

$$
f\left(\frac{1}{a}\right)=\frac{\frac{1}{a}-1}{\frac{1}{a}+1}=\frac{1-a}{a+1}=-\left(\frac{a-1}{a+1}\right)=-f(a)
$$

112. For area of Δ to be maximum, triangle should be an equilateral triangle.

$\ell=$ length of side of equilateral triangle $=\sqrt{3 a}$

$$
\therefore \text { Area }=\frac{\sqrt{3}}{4}(\sqrt{3} a)^{2}=\frac{3 \sqrt{3}}{4} a^{2}
$$

113.

$$
\begin{aligned}
& f(x)=x+\frac{1}{x} \Rightarrow f^{\prime}(x)=\frac{x^{2}-1}{x^{2}} \\
& \Rightarrow f^{\prime}(x)=\frac{(x-1)(x+1)}{x^{2}}
\end{aligned}
$$

for $x \in(0,1), f^{\prime}(x)<0$
$\Rightarrow f(x)$ decreases
114. $\quad f(x)=x^{n}, n \neq 0$.
$\Rightarrow f^{\prime}(x)=n x^{n-1}$
$f(x)$ to be differentiable, $n-1 \geq 0 \Rightarrow n \geq 1$ $\Rightarrow n \in[1, \infty]$
115.
$\int_{e^{-1}}^{e^{2}}\left|\frac{\log x}{x}\right| d x=\int_{e^{-1}}^{e^{0}}-\frac{\log x}{x} d x+\int_{e^{0}}^{e^{2}} \frac{\log x}{x} d x$
$=-\frac{1}{2}\left[(\log x)^{2}\right]_{e^{-1}}^{e^{0}}+\frac{1}{2}\left[(\log x)^{2}\right]_{e^{0}}^{e^{2}}=\frac{1}{2}+2=\frac{5}{2}$
116. \quad New variance $=5 \times(3)^{2}=45$
117. Required mean
$=\frac{20 \times 100-(21+21+18+20)}{96}=\frac{1920}{96}=20$
118. Required probability
$=\frac{{ }^{2} C_{0} \times{ }^{2} C_{2}}{{ }^{4} C_{2}}=\frac{1}{6}$
119. Required probability

$$
=1-\left(\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}\right)=1-\frac{1}{4}=\frac{3}{4}
$$

120.

By aligation, ratio $=1: 2$
\therefore no. of boys $=\frac{1}{3} \times 150=50$

General Ability Test NDA 12017 Question Paper

PART - A
 SPOTTING ERRORS

Directions for the following 5 (five) items:

Each item in this section has a sentence with three underlined parts labelled (a), (b), and (c). Read each sentence to find out whether there is any error in any underlined part and indicate your response in the Answer Sheet against the corresponding letter i.e., (a) or (b) or (c). If you find no error, your response should be indicated as (d).

1. I can fly if I will be a bird. No error
(a)
(b)
(c)
(d)
2. As soon as the train arrived
(a)
(b)
the passengers entered the compartments. (c)

No error.
(d)
3. Never I have seen such a town. No error.
(a)
(b)
(c)
(d)
4. He goes to his office by bicycle every day.
(a)
(b)
(c)

No error.
(d)
5. Far from being appreciated,
(a)
his conduct was discussed
(b)
and sharply commented.
(c)

No error.
(d)

COMPREHENSION

Directions for the following 6 (six) items:

In this section, you have two short passages. Read the passages and answer the items that follow. You are required to select your answers based on the contents of the passage and opinion of the author only.

Passage - 1

We had just passed Tenali, where I roused myself in order to hear the name of the station. As I was falling asleep again, a violent jolt shot me into the arms of
somebody in the seat opposite. The engine with one wheel broken was lying across the track and beside it was the luggage van, likewise, derailed. Groaning, wheezing, gasping, sputtering in its death agony, the engine was like a fallen horse which, snorting, trembling in every limb, its flanks heaving, its chest laboring, seems incapable of making the smallest effort to struggle on its legs again.
6. The author had roused himself as he wanted to
(a) get off
(b) meet someone
(c) know the name of the station
(d) keep himself awake
7. The engine stopped because
(a) the driver had stopped it
(b) one of the wheels was broken
(c) there was a halting place
(d) there was no fuel
8. The engine is compared to a fallen horse because
(a) it was groaning like a horse
(b) it was lying across the track
(c) it could make no effort to stand upright
(d) it had a broken wheel

Passage-2

I was beginning to tire a little now. I had been cutting steps continuously for two hours, and Tenzing, too, was moving very slowly. As I chipped steps around still another corner, I wondered rather dully just how long we could keep it up. Our original zest had now quite gone and it was turning more into a grim struggle. I then realized that the ridge ahead, instead of still monotonously rising, now dropped sharply away, and far below I could see the North Col and Rongbuk glacier. I looked upwards to see a narrow ridge running up to a snowy summit. A few more whacks of the ice-axe in the firm snow and we stood on top.
9. Which of the following is the most appropriate description of the area in which the narrator had been moving?
(a) a steep rocky slope
(b) a peak with a flight of steps
(c) a high peak covered with snow
(d) a long ridge
10. 'I had been cutting steps continuously for two hours' suggests that
(a) the climber was unskilled in the art of making steps
(b) he had to cut the steps out of snow before climbing up which was necessarily a slow process
(c) the slowness was caused by the fact that as soon as he cut the steps they were again covered with snow
(d) he had to work suspended form a ledge
11. 'It was turning more into a grim struggle' would mean
(a) that after the long exertion he was feeling so weak that any further climbing meant a hard struggle with the forces of nature
(b) that Tenzing was making the task more difficult
(c) that strong cold wind was pushing him down from above and that he had to struggle with the forces of nature
(d) that he was in a mood to give up ultimately

SELECTING WORDS

Directions for the following 10 (ten) items:

Each of the following items in this section has a sentence with a blank space and four words or group of words given after the sentence. Select whichever word or group of words you consider most appropriate for the blank space and indicate your response on the Answer Sheet accordingly.
12. I \qquad you to be at the party this evening.
(a) look forward to
(b) hope
(c) expect
(d) think
13. When I met John yesterday, it was the first time I \qquad him since Christmas.
(a) saw
(b) have seen
(c) had seen
(d) have been seeing
14. He \qquad to listen to my arguments and walked away.
(a) denied
(b) disliked
(c) prevented
(d) refused
15. The flow of blood was so \qquad that the patient died.
(a) intense
(b) adequate
(c) profuse
(d) extensive
16. You have never \qquad me about your experiences in America.
(a) said
(b) told
(c) explained
(d) spoken
17. I always felt hungry \qquad I heard the dinner bell.
(a) as much as
(b) as well as
(c) as soon as
(d) as close as
18. Although they took every precaution, they could not \qquad the accident.
(a) defer
(b) allow
(c) avoid
(d) block
19. The ambitious nobleman \qquad to marry the king's daughter.
(a) transpired
(b) perspired
(c) aspired
(d) expired
20. The dictator of that country was a monster of wickedness, insatiable in his \qquad for blood and plunder.
(a) idea
(b) vision
(c) lust
(d) intention
21. Please don't give me anymore, I have had
\qquad -.
(a) few
(b) too little
(c) little
(d) enough
(b) $P R Q S$
(c) PQSR
(d) RPQS

ORDERING OF WORDS IN A SENTENCE

Directions for the following 9 (nine) items:

Each of the following items in this section consists of a sentence the parts of which have been jumbled. These parts have been labelled P, Q, R, and S. Given below each sentence are four sequences namely (a), (b), (c), and (d). You are required to rearrange the jumbled parts of the sentence and mark your response accordingly.
22. Farm workers spend outdoors
$P \quad Q \quad R$
$\underline{\text { most of their time. }}$
S
The proper sequence should be
(a) PQRS
(b) $P R Q S$
(c) PQSR
(d) RPQS
23. He shuffled the papers in a drawer together. $\begin{array}{lll}\mathrm{P} & \mathrm{Q} & \mathrm{R}\end{array}$
The proper sequence should be
(a) PQSR
(b) $P Q R S$
(c) $P S Q R$
(d) RSPQ
24. Do you think will this soap

$$
\begin{array}{lll}
P & Q & R
\end{array}
$$

shrink woolen clothes?
S
The proper sequence should be
(a) PQRS
(b) $P R Q S$
(c) QRPS
(d) QPRS
25. We advised the hijackers to surrender P
to the police themselves.
$R \quad S$
The proper sequence should be
(a) PQRS
26. Sports cars appeal to some motorists only $P \quad Q$ R
with noisy exhausts.
S
The proper sequence should be
(a) RQSP
(b) $P S Q R$
(c) RSPQ
(d) PQSR
27. He almost

P Q
planned the entire strategy of operation
R
single-handed.
S
The proper sequence should be
(a) R S P Q
(b) $P R Q S$
(c) $S Q R P$
(d) QPSR
28. She has more intelligence
$\begin{array}{lll}P & Q & R\end{array}$
than what we suspected her to possess.

S

The proper sequence should be
(a) PQSR
(b) $P R Q S$
(c) $P S Q R$
(d) PQRS
29. They should implant
P

Q
in the minds of young children sound principles.

R

S
The proper sequence should be
(a) PQRS
(b) $P Q S R$
(c) $R P Q S$
(d) PRQS
30. When I was a student

P

1 learnt swimming at the age of 15
Q
of class X in a government school.
$R \quad S$
The proper sequence should be
(a) PQRS
(b) $P R Q S$
(c) $Q P R S$
(d) QSPR

SENTENCE IMPROVEMENT

Directions for the following $\mathbf{1 0}$ (ten) items:

In this section, look at the underlined part of each sentence. Below each sentence are given three possible substitutions for the underlined part. If one of them (a), (b) or (c) is better than the underlined part, indicate your response on the Answer Sheet against the corresponding letter (a), (b) or (c). If none of the substitutions improves the sentence, indicate (d) as your response on the Answer Sheet. Thus a 'No improvement' response will be signified by the letter (d).
31. I disliked him not so much for his meanness but for his dishonesty.
(a) as for
(b) but because
(c) but due to
(d) No improvement
32. He preferred death rather than imprisonment.
(a) for
(b) to
(c) than
(d) No improvement
33. They kept the idea secretly.
(a) secretive
(b) secret
(c) secretively
(d) No improvement
34. He ought not to tell me your secret, but he did.
(a) telling
(b) have told
(c) having told
(d) No improvement
35. If I don't know the meaning of a word, I look it after in the dictionary.
(a) look it out
(b) look it for
(c) look it up
(d) No improvement
36. Mr. and Mrs. Rao stay in their home every evening.
(a) at home
(b) inside home
(c) within their home
(d) No improvement
37. When we saw him last, he ran to catch a bus.
(a) has run
(b) had run
(c) was running
(d) No improvement
38. She cut a sad figure in her first performance on the stage.
(a) made a sorry figure
(b) cut a sorry face
(c) cut a sorry figure
(d) No improvement
39. Last evening, I went to the optician and bought spectacles.
(a) a spectacle
(b) two spectacles
(c) a pair of spectacles
(d) No improvement
40. I would like to avail a fifteen days holiday this summer.
(a) to avail of
(b) to avail myself of
(c) to avail myself
(d) No improvement

ANTONYMS

Directions for the following 5 (five) items:

In this section, each item consists of a sentence with a word underlined and is followed by four words. Select the word that is most opposite in meaning to the underlined word and indicate your response in the Answer Sheet accordingly.
41. My first lecture in the classroom was a fiasco.
(a) success
(b) joy
(c) fun
(d) disaster
42. It was indeed arduous to cross streets in New York.
(a) pleasant
(b) effortless
(c) interesting
(d) risky
43. Unlike his brother, he is affable.
(a) reserved
(b) gullible
(c) irritable
(d) lovable
44. The birth of his child decidedly proved to be an auspicious event in his life.
(a) precious
(b) ominous
(c) useless
(d) unforgettable
45. The witness corroborated word for word the statement of the victim.
(a) accepted
(b) confirmed
(c) denied
(d) repeated

SYNONYMS

Directions for the following 5 (five) items:

In this section, each item consists of a sentence with a word underlined and is followed by four words or group of words. Select the word or group of words that is most similar in meaning to the underlined word and indicate your response in the Answer Sheet accordingly.
46. It is unwise to sever diplomatic relations with a neighbouring country over small matters.
(a) engage
(b) estrange
(c) cut off
(d) twist
47. Bad tendencies are to be countered by good ones until all that is evil disappears.
(a) opposed
(b) balanced
(c) reduced
(d) bypassed
48. The police fired indiscriminately at the crowd, killing many innocent women and children.
(a) continuously
(b) without distinguishing
(c) foolishly
(d) rapidly
49. Businessmen who lack acumen cannot be expected to be very successful.
(a) fairness
(b) sharpness
(c) boldness
(d) righteousness
50. His candid opinions have won him many friends.
(a) kind
(b) courteous
(c) generous
(d) frank

PART - B

51. Which one of the following statements regarding King Krishnadevaraya is NOT correct?
(a) He was a great scholar of Telugu and Sanskrit.
(b) Foreign travelers Paes and Nuniz visited his court.
(c) Barbosa praised him for the great justice and equity prevailing in his empire.
(d) He wrote his magnum opus Amuktamalyada in Sanskrit.
52. Match List I with List II and select the correct answer using the given code below the Lists:

List I	List II
(Amendment to the	(Subject)
Constitution of India)	

A. $52^{\text {nd }}$ Amendment Act,	1. Reduction of
1985	voting age from 21
to 18	

B. $73^{\text {rd }}$ Amendment Act, 2. Right to 1992 Education
C. $61^{\text {st }}$ Amendment Act,
3. Panchayati Raj 1988
D. $86^{\text {th }}$ Amendment Act, 2006
4. Disqualification
on grounds of defection

Code:

	A	B	C	D
(a)	4	1	3	2
(b)	4	3	1	2
(c)	2	3	1	4
(d)	2	1	3	4

53. Which one of the following was NOT a cause of the Revolt of 1857 ?
(a) The rumour that the British had mixed the bone dust of cows and pigs into the flour being sold in the market.
(b) The prophecy that British rule would come to an end on the centenary of the Battle of Plassey on $23^{\text {rd }}$ June, 1857.
(c) Popular discontent with British rule.
(d) The prophecy that the end of British rule would lead to the end of the Kali Yuga and the return of Ram Rajya
54. Which one of the following was NOT a feature of the Subsidiary Alliance of Lord Wellesley?
(a) The British were responsible for protecting the ally from any external threats.
(b) All internal threats were to be handled by the ally alone, with no help from the British.
(c) The ally was to provide resources for maintaining a British armed contingent stationed in its territory.
(d) The ally could not enter into any agreement with other rulers without the permission of the British.
55. Match List I with List II and select the correct answer using the code given below the Lists:

A. Lakwa
56. Copper
B. Malanjkhand
57. Petroleum
C. Kalakot
58. Zinc
D. Zawar
59. Coal

Code:

	A	B	C	D
(a)	3	4	1	2
(b)	3	1	4	2
(c)	2	1	4	3
(d)	2	4	1	3

56. Which one of the following are the major coral reef areas of India?
57. Gulf of Kachchh
58. Gulf of Mannar
59. Lakshadweep
60. Andaman and Nicobar Islands

Select the correct answer using the code given below:
(a) 1 and 3 only
(b) 2 and 4 only
(c) 1, 2 and 3 only
(d) 1, 2, 3 and 4
57. Which of the following regions is/are NOT known for cotton-textile industry?

1. Mumbai - Pune region
2. Madurai - Coimbatore region
3. Dhanbad-Jamshedpur region
4. Indore - Ujjain region

Select the correct answer using the code given below:
(a) 1 and 3
(b) 2 and 3
(c) 1, 2 and 4
(d) 3 only
58. Which one of the following States does NOT have the Headquarters of any Railway Zone?
(a) Jharkhand
(b) Chhattisgarh
(c) Odisha
(d) Bihar
59. Suppose a rod is given a negative charge by rubbing it with wool. Which one of the following statements is correct in this case?
(a) The positive charges are transferred from rod to wool.
(b) The positive charges are transferred from wool to rod.
(c) The negative charges are transferred from rod to wool.
(d) The negative charges are transferred from wool to rod.
60. Which one of the following is the correct relation between frequency f and angular frequency ω ?
(a) $f=\pi \omega$
(b) $\omega=2 \pi f$
(c) $f=2 \omega / \pi$
(d) $f=2 \pi \omega$
61. A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a certain sample. What would be the corresponding reading in a Celsius thermometer?
(a) 574
(b) 301
(c) 273
(d) 232
62. If the potential difference applied to an X-ray tube is doubled while keeping the separation between the filament and the target as same, what will happen to the cutoff wavelength?
(a) will remain same
(b) will be doubled
(c) will be halved
(d) will be four times of the original wavelength
63. Which one of the following statements is true for the relation $F=\frac{G m_{1} m_{2}}{r^{2}}$? (All symbols have their usual meanings.)
(a) The quantity G depends on the local value of g , acceleration due to gravity.
(b) The quantity G is the greatest at the surface of the Earth.
(c) The quantity G is used only when Earth is one of the two masses.
64. Why is it difficult to measure the coefficient of expansion of a liquid than solid?
(a) Liquids tend to evaporate at all temperatures
(b) Liquids conduct more heat
(c) Liquids expand too much when heated
(d) Their containers also expand when heated
65. Radon is
(a) an inert gas
(b) an artificial fiber
(c) an explosive
(d) a metal
66. The chemical name for baking soda is
(a) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(b) NaHCO_{3}
(c) CaCO_{3}
(d) NaOH
67. Which one of the following elements is used in pencil-lead?
(a) zinc
(b) lead
(c) carbon (graphite)
(d) tin
68. Who among the following is one of the authors of the book "Philosophy of the Bomb"?
(a) Bhagat Singh
(b) Jawaharlal Nehru
(c) Surya Sen
(d) Yashpal
69. Which one of the following statements about Chittagong group is NOT correct?
(a) Its membership included a large number of youth including Ganesh Ghosh, Lokenath Baul, and Anant Singh.
(b) Its leader Surya Sen had been a lawyer in Dhaka before joining the group.
(c) Surya Sen and his group were closely associated with Congress work in Chittagong.
(d) This group had prepared an action plan to occupy the armouries in Chittagong.
70. Which one of the following was a significant feature of the Quit India Movement?
(a) Women did not play an important role in the movement.
(b) Nasik in Maharashtra was an important regional base during the movement.
(c) It was marked by anti-zamindar violence.
(d) It was marked by the emergence of parallel governments in different parts of India.
71. Which one of the following devices changes low voltage alternating current to high voltage alternating current and vice versa?
(a) generator
(b) motor
(c) transformer
(d) vibrator
72. An optical illusion which occurs mainly in deserts during hot summer is based on the principle of
(a) reflection
(b) interference
(c) dispersion
(d) total internal reflection
73. At which place Earth's magnetic field becomes horizontal?
(a) magnetic meridian
(b) magnetic equator
(c) geographical pole
(d) Tropic of Cancer
74. The speed of a car traveling on a straight road is listed below at successive intervals of 1 s :

Time (s)	0	1	2	3	4
Speed $(\mathrm{m} / \mathrm{s})$	0	2	4	6	8

Which of the following is/are correct?
The car travels

1. with a uniform acceleration of $2 / \mathrm{ms}^{2}$.
2. 16 m in 4 s .
3. with an average speed of $4 \mathrm{~m} / \mathrm{s} /$

Select the correct answer using the code given below:
(a) 1, 2 and 3
(b) 2 and 3 only
(c) 1 and 2 only
(d) 1 only
75. The speed of a body that has Mach number more than 1 is
(a) supersonic
(b) subsonic
(c) $300 \mathrm{~m} / \mathrm{s}$
(d) about $10 \mathrm{~m} / \mathrm{s}$
76. Molecules of which of the following has cage like structure?

1. Diamond
2. Graphite
3. Fullerenes

Select the correct answer using the code given below:
(a) 1, 2, and 3
(b) 2 and 3 only
(c) 2 only
(d) 3 only
77. Temporary hardness in water is due to which one of the followings of Calcium and Magnesium?
(a) hydrogen carbonates
(b) carbonates
(c) chlorides
(d) sulphates
78. Stung by hairs of nettle leaves causes burning pain. This is due to the injection of
(a) acetic acid
(b) methanoic acid
(c) sulphuric acid
(d) hydrochloric acid
79. Which one of the following elements is least reactive with water?
(a) lithium
(b) sodium
(c) potassium
(d) cesium
80. Rutherford's alpha-particle scattering experiment was responsible for the discovery of
(a) electron
(b) proton
(c) nucleus
(d) helium
81. Glass is a
(a) liquid
(b) colloid
(c) non-crystalline amorphous solid
(d) crystalline solid
82. Cell wall of any fungus is different from plants in having
(a) cellulose
(b) chitin
(c) cholesterol
(d) glycogen
83. Sleeping sickness is a parasitic disease of humans and other animals. It is caused by
(a) Histomonas
(b) Trypanosoma
(c) Angomonae
(d) Naegleria
84. Which one of the following agencies enforces the laws on food security in India?
(a) FDA
(b) WHO
(c) FSSAI
(d) FAO
85. Dengue virus causes high fever, rashes and reduces the number of a particular type of blood cells. Those blood cells are
(a) monocytes
(b) platelets
(c) eosinophils
(d) neutrophils
86. Which one of the following statements is NOT correct?
(a) all proteins are enzymes
(b) mostly enzymes are proteins
(c) all fats are energy rich compounds
(d) glucose is a common carbohydrate
87. Sugarcane is one of the important cash crops in India. It is grown to obtain
(a) starch
(b) glucose
(c) fructose
(d) sucrose
88. The colorful part of the Sunflower or Marigold plant is
(a) flower
(b) inflorescence
(c) fruit
(d) seed
89. Match List I with List II and select the correct answer using the code given below the Lists:

List I
(Mineral)

A. Manganese	1. Uttarakhand
B. Gypsum	2. Kamataka
C. Limestone	3. Rajasthan
D. Magnesite	4. Odisha

Code:

	A	B	C	D
(a)	1	3	2	4
(b)	1	2	3	4
(c)	4	2	3	1
(d)	4	3	2	1

90. Which one among the following is the correct order of tiger reserves situated from North to South in India?
(a) Corbett - Simlipal - Sariska - Periyar
(b) Periyar - Sariska - Simlipal - Corbett
(c) Corbett - Sariska - Simlipal - Periyar
(d) Periyar - Simlipal - Sariska - Corbett
91. Which of the following are correct with regard to Indian Monsoonal Rainfall?
92. largely governed by the topographical features
93. regional and seasonal variation in the distribution of rainfall
94. heavy downpour resulting considerable runoff
95. beginning and end of rain is regular and on time.
Select the correct answer using the code given below:
(a) 1 and 2 only
(b) 1, 2 and 3
(c) 3 and 4 only
(d) 2, 3 and 4
96. Match List I with List II and select the correct answer using the code given below the Lists:

List I	List II
(Type of climate)	(State)

$\begin{array}{ll}\text { A. Monsoon with Short } & \text { 1. Uttar Pradesh } \\ \text { Dry Season (Amw) } & \text { and Bihar }\end{array}$
B. Cold Humid Winter 2. Tamil Nadu with Short Summer (Dfc) Coast

C. Monsoon with Dry	3. Arunachal Winter (Cwg)		
Pradesh			

Code:

	A	B	C	D
(a)	4	3	1	2
(b)	4	1	3	2
(c)	2	1	3	4
(d)	2	3	1	4

93. Which one of the following Himalayan rivers does NOT originate from across the Himalayas?
(a) Indus
(b) Satluj
(c) Ganga
(d) Brahmaputra
94. The Headquarters of Eastern Railway Zone of Indian Railway is located at
(a) Bhubaneswar
(b) Kolkata
(c) Hajipur
(d) Guwahati
95. Which one among of the following countries is the largest trading partner of India in external trade for the year 2015-2016?
(a) United States of America
(b) United Kingdom
(c) United Arab Emirates
(d) China
96. The radii of curvature of the faces of a double convex lens are 10 cm and 20 cm . The refractive index of the glass is $1 \cdot 5$. What is the power of this lens (in units of dioptre)?
(a) $+7 \cdot 5 \mathrm{D}$
(b) $-7 \cdot 5 \mathrm{D}$
(c) $+2 \cdot 5 \mathrm{D}$
(d) $+5 \cdot 0 \mathrm{D}$
97. The time period of a simple pendulum made using a thin copper wire of the length L is T. Suppose the temperature of the room in which this simple pendulum is placed increases by $30^{\circ} \mathrm{C}$, what will be the effect on the time period of the pendulum?
(a) T will increase slightly
(b) T will remain the same
(c) T will decrease slightly
(d) T will become more than 2 times
98. Which one of the following physical quantity has the same unit as that of pressure?
(a) angular momentum
(b) stress
(c) strain
(d) work
99. Which one of the following statements is correct with regard to the material of electrical insulators?
(a) they contain no electrons
(b) electrons do not flow easily through them
(c) they are crystals
(d) they have more number of electrons than the protons on their surface
100. Which one of the following physical quantities does NOT affect the resistance of a cylinder resistor?
(a) the current through it
(b) its length
(c) the resistivity of the material used in the resistor
(d) the area of cross-section of the cylinder
101. Kidney secretes an enzyme, which changes plasma protein angiotensinogen into angiotensin. The enzyme is
(a) renin
(b) nitrogenase
(c) hydrolase
(d) mono-oxygenase
102. Red blood cells (RBCs) have
(a) no nucleus, no mitochondria and no endoplasmic reticulum
(b) nucleus, mitochondria and endoplasmic reticulum
(c) nucleus, mitochondria but no endoplasmic reticulum
(d) no mitochondria but endoplasmic reticulum is present
103. According to the Census 2011, the density of population in which one among the following States is the lowest?
(a) Sikkim
(b) Nagaland
(c) Manipur
(d) Mizoram
104. Headquarters of the World Meteorological Organizations located in
(a) Washington
(b) Geneva
(c) Moscow
(d) London
105. Match List I with List II and select the correct answer using the code given below the Lists:

List II
(Industry)
A. Petrochemical
B. Aircraft
C. Machine tools
D. Cotton textiles

1. Coimbatore
2. Pinjore
3. Bengaluru
4. Bongaigaon
(Place)

Code:

	A	B	C	D
(a)	4	3	2	1
(b)	4	2	3	1
(c)	1	2	3	4
(d)	1	3	2	4

106. Consider the following statements pertaining to Coffee plantation in India:
107. Need warm and moist climate with a spell of dry weather during the ripening period.
108. Rolling fields having good drainage.
109. Strong sunshine over hilly slopes exceeding temperature $35^{\circ} \mathrm{C}$.
110. Kamataka is the leading producer in India.

Which of the statements given above are correct?
(a) 1 and 4 only
(b) 1, 2 and 3
(c) 3 and 4
(d) 1,2 and 4
107.

Dr. Urjit Patel, who has been appointed recently as Governor of Reserve Bank of India, was holding which position immediately prior to this appointment?
(a) Chief Economist, IMF
(b) Deputy Governor, Reserve Bank of India
(c) Chief Economic Advisor to the Government of India
(d) Professor of Economics at Harvard University
108. Who among the following personalities is NOT a Governor of any Indian State?
(a) Najma Heptulla
(b) Ram Nath Kovind
(c) Acharya Dev Vrat
(d) Arvind Subramaniam
109. Which of the following cricket teams was defeated by India to lift the Women's Twenty 20 Asia Cup 2016?
(a) Bangladesh
(b) Sri Lanka
(c) Pakistan
(d) Afghanistan
110. Which one of the following was the venue of $2^{\text {nd }}$ BRICS Youth Summit of the Ministers, Officials and Youth Delegations?
(a) New Delhi
(b) Mumbai
(c) Shillong
(d) Guwahati
111. Which one among the following States of India has recently proposed to frame the first Internal Security Act to deal with the challenges of terrorism, insurgency, communalism and caste violence?
(a) Maharashtra
(b) Gujarat
(c) Uttar Pradesh
(d) Chhattisgarh
112. The World Humanitarian Day is being observed every year on which date?
(a) 24 October
(b) 19 August
(c) 10 December
(d) 8 March
113. Surge pricing takes place when a service provider
(a) raises the price of its product or service as demand outstrips supply
(b) follow preset prices immune to demand and supply dynamics
(c) fixes a minimum price for its services
(d) fixes an average price on the basis of transactions carried over a day
114. By fulfilling which of the following conditions can a political party claim the status of a national party?

1. It secures at least six per cent (6\%) of the valid votes polled in any four or more states, at a general election to the House of the People or, to the State Legislative Assembly.
2. It wins at least four seats in the House of the People from any State or States or wins at least two per cent (2\%) seats in the House of the People (i.e., 11 seats in the existing House having 543 members), and these members are elected from at least three different States.
3. The party in question has got recognition as a state party in at least two states.
4. It must have its headquarters in New Delhi.

Select the correct answer using the code given below:
(a) 1, 2 and 3
(b) 2 and 4
(c) 1 and 2 only
(d) 1, 3 and 4
115. In its emphasis on enhancing human capabilities, which one among the following does NOT figure in the Twelfth Five-Year Plan?
(a) life and longevity
(b) education
(c) delivery of public service
(d) skill development
116. Which one of the following is NOT a target of the $12^{\text {th }}$ Five-Year Plan?
(a) Real GDP Growth Rate of 8 per cent
(b) Agriculture Growth Rate of 5 per cent
(c) Manufacturing Growth Rate of 10 per cent
(d) Increase in green cover by 1 million hectare every year during the Plan period
117. Which one of the following was following characteristics does NOT describe the Khilafat movement?
(a) Mahatma Gandhi sought to link it to the Non-Cooperation movement
(b) It was not supported by the Congress
(c) It demanded that the Turkish Sultan must retain control over Muslim sacred spaces in the erstwhile Ottoman empire
(d) It was led by Muhammad Ali and Shaukat Ali 118. Which one of the following was NOT a feature of railways in colonial India?
(a) The main purpose of the setting up of railways in India was to serve the interest of the empire.
(b) British capital investments were invited with 15% guaranteed interest to be paid if necessary from Indian revenues.
(c) The construction works disturbed ecology.
(d) The construction of the railways was planned in such a way that it connected the internal markets with the ports but provided no interconnection between internal market cities.
119. Which colonial administrator made the following declaration about the partition of Bengal in 1904? "Bengal united is a power. Bengal divided will pull in different ways. That is perfectly true and one of the merits of the scheme."
(a) Lord Curzon
(b) H. H. Risley
(c) Lord Minto
(d) Sir Lancelot Hare
120. Who launched the Bardoli Satyagraha on $4^{\text {th }}$ February, 1928?
(a) Mahatma Gandhi
(b) Vallabhbhai Patel
(c) Rajendra Prasad
(d) Kalyanji Mehta
121. Which one of the following Princely States did NOT support the Congress during the course of the Civil Disobedience Movement?
(a) Bhavnagar
(b) Mysore
(c) Junagadh
(d) Kathiawar
122. Which one of the following is a feature of thought and philosophy of the Kandukuri Viresalingam?
(a) He believed that science and morality were unconnected to truth
(b) He believed in universal education
(c) He believed that language had no role in inculcating morality in students
(d) He did not attempt to build a national consciousness on a cultural base
123. Name the calligrapher in Akbar's court who was honoured with the title "Zarrin Kalam" or Golden Pen
(a) Abdul Fazl
(b) Tansen
(c) Muhammad Husayn
(d) Muhammad Kasim
124. Which one of the following sections of the Golden Quadrilateral Highway in India is the longest in terms of route distance?
(a) Delhi - Kolkata
(b) Kolkata - Chennai
(c) Chennai - Mumbai
(d) Mumbai-Delhi
125. Match List I with List II and select the correct answer using the code given below the Lists:
List I
(Classification of
resources)
A. Basic inexhaustible

1. Hydel power resource
B. Conventional non-
2. Coal renewable resource
C. Non-conventional
3. Solar energy renewable resource
D. Non-conventional 4. Natural gas non-renewable resource

Code:

	A	B	C	D
(a)	3	2	1	4
(b)	3	1	2	4
(c)	4	1	2	3
(d	4	2	1	3

126. Match List I with List II and select the correct answer using the code given below the Lists:

List I

(Mineral Deposit)
A. Gypsum

1. Odisha
B. Graphite
2. Gujarat

C. Fluorspar

3.Arunachal
Pradesh
D. Nickel
4. Rajasthan

Code:

	A	B	C	D
(a)	1	3	2	4
(b)	1	2	3	4
(c)	4	3	2	1
(d)	4	2	3	1

127. Which one of the following pairs of Tribe and State is NOT correctly matched?
(a) Tharu: Madhya Pradesh
(b) Adi: Arunachal Pradesh
(c) Irula: Kerala
(d) Shaharia: Rajasthan
128. If the absolute refractive indices of glass and water are $3 / 2$ and $4 / 3$ respectively, what will be the ratio of velocity of light in glass and water?
(a) $3: 4$
(b) $4: 3$
(c) $8: 7$
(d) $8: 9$
129. A positive charge $+q$ is placed at the centre of a hollow metallic sphere of inner radius a and outer radius b. The electric field at a distance r from the centre is denoted by E. In this regard, which one of the following statements is correct?
(a) $E=0$ for $a<r<b$
(b) $E=0$ for $r<a$
(c) $E=q / 4 \pi \varepsilon_{0} r$ for $a<r<b$
(d) $E=q / 4 \pi \varepsilon_{0} a$ for $r<a$
130. Consider the following Indian States:
131. Bihar
132. Rajasthan
133. Jammu and Kashmir
134. Haryana

Which one of the following is the correct ascending order of the above States on the basis of percentage of State's population of India (based on census 2011)?
(a) 3-4-1-2
(b) 4-2-1-3
(c) 3-4-2-1
(d) 2-3-4-1
131. Who among the following was the author of the Badshah Nama?
(a) Abdul Hamid Lahori
(b) Abul Fazl
(c) Shah Jahan
(d) Sadullah Khan
132. Which one of the following statements about Fatehpur Sikri is NOT correct?
(a) It was located on the direct road to Ajmer.
(b) Akbar commissioned the building of a marble tomb for Sheikh Salim Chisti next to the Friday mosque at Fatehpur Sikri.
(c) The arched gateway or Bulund Darwaza was meant to remind visitors of the Mughal victory in Gujarat.
(d) In 1585, the capita of the Mughal emperor shifted from Fatehpur Sikri to Delhi.
133. Which one of the following cities hosted
the $3^{\text {rd }}$ World Trauma Congress recently?
(a) New Delhi
(b) Dacca
(c) Singapore
(d) Bangkok
134. Which one of the following is NOT one of the objectives of Act East Policy?
(a) To promote economic cooperation, cultural ties and develop strategic relationship with countries in the Asia-Pacific region
(b) To promote peace and amity with the neighbouring countries of Asia
(c) To place emphasis on India-ASEAN cooperation in India's domestic agenda
(d) To provide enhanced connectivity to the North East of India
135. Arrange the following countries in ascending order on the basis of the total medals earned by them in Rio Olympics 2016:

1. United States
2. China
3. Great Britain
4. Russia

Select the correct answer using the code given below:
(a) 1, 2, 3, 4
(b) $1,3,2,4$
(c) $4,3,2,1$
(d) 4, 3, 1, 2
136. Which one of the following is NOT an objective of the National Civil Aviation Policy 2016?
(a) Establish an integrated ecosystem which will lead to significant growth of civil aviation sector
(b) To promote tourism, increase employment and lead to a balanced regional growth
(c) Ensure safety, security and sustainability of all sectors through the use of technology
(d) Enhance regional connectivity through fiscal support and infrastructure development
137. Which one of the following statements is NOT correct?
(a) In the conduction mode of transference of heat, the molecules of solid pass heat from one molecule to another without moving from their positions
(b) The amount of heat required to raise the temperature of a substance is called its specific heat capacity
(c) The process of heat transfer in liquids and gases is through convection mode
(d) The process of heat transfer from a body at higher temperature to a body at lower temperature without heating the space between them is known as radiation
138. The amount of heat required to change a liquid to gaseous state without any change in temperature is known as
(a) specific heat capacity
(b) mechanical equivalent of heat
(c) latent heat of evaporation
(d) quenching
139. The following figure shows displacement versus time curve for a particle executing simple harmonic motion:

Which one of the following statements is correct?
(a) phase of the oscillating particle is same at $t=1 s$ and $t=3 s$
(b) phase of the oscillating particle is same at $t=2 s$ and $t=8 s$
(c) phase of the oscillating particle is same at $t=3 s$ and $t=7 s$
(d) phase of the oscillating particle is same at $t=4 s$ and $t=10 s$
140. Match List I with List II and select the correct answer using the code given below the Lists:

List I

(Disease)
A. Hypermetropia
B. Presbyopia
C. Myopia
D. Cataract

Code:

	A	B	C	D
(a)	4	2	1	3
(b)	4	1	2	3
(c)	3	1	2	4
(d)	3	2	1	4

141. A circular coil of single turn has a resistance of 20Ω. Which one of the following is the correct value for the resistance between the ends of any diameter of the coil?
(a) 5Ω
(b) 10Ω
(c) 20Ω
(d) 40Ω
142. In a solenoid, the current flowing through the wire I and number of turns per unit length is n. This gives a magnetic field B inside the solenoid. If number of turn per unit length is increased to $2 n$, what will be the value of magnetic field in the solenoid?
(a) B
(b) $2 B$
(c) $B / 2$
(d) $B / 4$
143. Which one of the following statements is correct about the magnification of an optical microscope?
(a) Magnification increases with the increase in focal length of eyepiece
(b) Magnification increases with the increase in focal length of eyepiece
(c) Magnification decreases with the increase in focal length of eyepiece
144. A homogeneous mixture contains two liquids. How are they separated?
(a) by filtration
(b) by evaporation
(c) by distillation
(d) by condensation
145. Which one of the following elements forms highest number of compounds?
(a) oxygen
(b) hydrogen
(c) chlorine
(d) carbon
146. Which one of the following elements corrodes rapidly?
(a) aluminum
(b) iron
(c) zinc
(d) silver
147. 20 g of common salt is dissolved in 180 g of water. What is the mass percentage of the salt in the solution?
(a) 5%
(b) 9%
(c) 10%
(d) 15%
148. The valency of an element depends upon the
(a) total number of protons in an atom
(b) mass number of an atom
(c) total number of neutrons in an atom
(d) total number of electrons in the outer most shell of an atom
149.

Match List I with List II and select the correct answer using the code given below the Lists:

List I
 (Noble gas)

A. Argon
B. Neon
C. Krypton
D. Xenon
4. In tungsten filament to last longer

Code:

	A	B	C	D
(a)	3	1	2	4
(b)	3	2	1	4
(c)	4	2	1	3
(d)	4	1	2	3

150. Colour vision in human eyes is the function of photoreceptor cells named
(a) rods
(b) cones
(c) blind spot
(d) fovea

General Ability Test NDA 12017 Answer Keys

Question No.	Answer								
1	B	31	A	61	B	91	B	121	B
2	D	32	B	62	C	92	A	122	D
3	B	33	B	63	D	93	C	123	C
4	B	34	D	64	D	94	B	124	B
5	C	35	C	65	A	95	D	125	A
6	C	36	A	66	B	96	A	126	A
7	B	37	C	67	C	97	A	127	A
8	B	38	C	68	A	98	B	128	D
9	D	39	D	69	B	$99 \sim$	B	129	A
10	B	40	B	70	D	100	A	130	C
11	A	41	A	71	C	101	A	131	A
12	C	42	B	72	D	102	A	132	A
13	A	43	A	73	B	103	D	133	A
14	D	44	C	74	A	104	B	134	C
15	C	45		75	A	105	A	135	B
16	B	46	C	76	A	106	D	136	C
17	C	47	A	77	A	107	B	137	B
18	C	48	B	78	B	108	D	138	C
19	C	49	B	79	A	109	C	139	C
20	C	50	D	80	C	110	D	140	B
21	D	51	C	81	C	111	A	141	A
22	C	52	B	82	B	112	B	142	B
23	A	53	D	83	B	113	A	143	D
24	B	54	B	84	C	114	A	144	C
25	C	55	C	85	B	115	D	145	D
26	B	56	D	86	A	116	B	146	B
27	B	57	D	87	D	117	B	147	C
28	D	58	A	88	B	118	B	148	D
29	B	59	D	89	D	119	B	149	C
30	C	60	B	90	C	120	B	150	B

NDA 22016 Question Paper

$$
s \sqrt{\frac{1+\omega^{2}}{1+\omega}}
$$

$$
\sqrt{\frac{x^{4}+x^{2}+1}{x}}+
$$

$$
\sqrt{\frac{x^{4}-x^{2}+1}{x}}+
$$

\qquad
\qquad
r. - 1 人

 \qquad . - .

$\because \div-\cdots \cdots$,

Age	Frequency
$15-25$	2
$25-35$	4
$35-45$	6
$45-55$	5
$55-65$	3

促

都

2	235	1
2	117	1
2	58	0
2	29	1
2	14	0
2	7	1
2	3	1
	1	

$$
=\frac{|8 a+6 b+1|}{\sqrt{8^{2}+6^{2}}}=
$$

$$
\mathrm{n}_{\mathrm{n}} \frac{\left(1+(1-h)+\frac{(1-h)^{2}}{2!}+\ldots .\right)-1}{1}
$$

$$
\frac{\left(1+h+\frac{h^{2}}{2!}+\ldots\right)-1}{t}
$$

$$
=\sqrt{\frac{x^{4}+x^{3}+1}{x}}+
$$

$$
\left\lfloor\frac{4 x^{3}+2 x-\frac{\dot{x}}{x^{2}}}{\sqrt{x^{3}+x^{2}+\frac{1}{x}}}\right\rfloor
$$

NDA 12016 Question Paper

 50

-
-
电

NDA 12016 Solutions

$$
=\left|\frac{5(0)+2(0)-5}{\sqrt{5^{2}+2^{2}+(0)^{2}}}\right|
$$

$$
\mathrm{r}=\frac{5}{\sqrt{29}}
$$

Numbers	Distance (d) from mean (16)
10	6
9	7
21	5
16	0
24	8

$$
\begin{aligned}
& =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+\sqrt{3} \frac{1}{\sqrt{3}}}\right|= \\
& =\tan 2 n^{\circ}
\end{aligned}
$$

NDA 22015 Question Paper


```
*-*
```

- $-\infty$

First two words (according to dictionary)	no. of words form
$\mathrm{AA}---$	$3!=6$
$\mathrm{AG}---$	$3!=6$
$\mathrm{AI}---$	$3!=6$
$\mathrm{AN}---$	$3!=6$
$\mathrm{GA}---$	$3!=6$
$\mathrm{GI}---$	$3!/ 2!=3$
$\mathrm{GN}---$	$3!/ 2!=3$
$\mathrm{IA}---$	$3!=6$
$\mathrm{IG}---$	$3!/ 2!=3$
$\mathrm{IN}---$	$3!/ 2!=3$
NA ---	$3!=6$

$$
\left.\frac{4}{5} \sqrt{1-\left(\frac{3}{5}\right)^{2}}+\frac{3}{5} \sqrt{1-\left(\frac{4}{5}\right)^{2}}\right]
$$

$=\sqrt{(4-3)^{2}+\left(0-\frac{12}{5}\right)^{2}}$
$=\sqrt{[-4-3]+\left(0-\frac{12}{5}\right)^{2}}$

$$
=\frac{|0-0-2|}{\sqrt{(1)^{2}+(-1)^{2}}}
$$

$$
=\sqrt{1+\frac{1 / 9}{1 / 16}}
$$

$$
\left.\begin{aligned}
& =\left|\frac{12 \cos \phi-15}{\sqrt{(3 \cos \phi)^{2}+(5 \cos \phi)^{2}}}\right| \\
& \cdots \cdots
\end{aligned} \right\rvert\,
$$

$$
=\frac{(6-24+18)}{\sqrt{(3)^{2}+(2)^{2}+(-6)^{2} \cdot \sqrt{(2)^{2}+(-12)^{2}+(-3)^{2}}}}
$$

$$
\left[\frac{\sqrt{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}+\sqrt{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)^{2}}}{\sqrt{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}-\sqrt{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)^{2}}}\right]
$$

$$
\frac{d y}{d x}=\frac{1}{2}
$$

$\frac{d y}{d x}-\frac{y}{x}=0$
\qquad $:$ \cdots

圂

NDA 12015 Question Paper

 , -
 -\therefore-.....

 -ー

$\because-1.0$
右

$$
\left[\frac{\sin \frac{\pi}{6}+i\left(1-\cos \frac{\pi}{6}\right)}{\sin \frac{\pi}{6}-i\left(1-\cos \frac{\pi}{6}\right)}\right]
$$

4-	

$$
\begin{aligned}
& \mathrm{n}\left|\frac{\mathrm{x}+\sqrt{\mathrm{x}^{2}+a^{2}}}{a}\right|+c \\
& \mathrm{n}\left|\frac{x^{2}+\sqrt{x^{2}+a^{2}}}{a}\right|+
\end{aligned}
$$

NDA 12015 Solutions

$-1\left|\frac{\frac{120}{119}-\frac{1}{70}}{1+\left(\frac{120}{119} \times \frac{1}{70}\right)}\right|$
$-1\left|\frac{\frac{8400-119}{8330}}{1+\frac{120}{8330}}\right|$
$-1\left|\frac{\frac{8281}{8330}}{\frac{8450}{8330}}\right|=\tan ^{-1} \frac{8-}{84}$
$-1\left|\frac{\frac{8281}{8450}+\frac{1}{99}}{1-\frac{8281}{8450} \times \frac{1}{99}}\right|$

[^0]
$$
\left.\frac{\left\{1-\left(\frac{1}{10}\right)^{\mathrm{n}}\right\}}{\left(1-\frac{1}{10}\right)}\right]
$$

NDA 12015


```
an-
8
```



```8
\(-\quad-\quad\)
A
```


\qquad

``` \(\because=\square\)
```



```
M.
\(\therefore=\)
```


\qquad
\qquad
\qquad

\qquad


``` - --
```



``` \(-\therefore\) --
```


NDA 12015

NDA 12015

1,1	1,2	1,3	1,4	1,5	1,6
2,1	2,2	2,3	2,4	2,5	2,6
3,1	3,2	3,3	3,4	3,5	3,6
4,1	4,2	4,3	4,4	4,5	4,6
5,1	5,2	5,3	5,4	5,5	5,6
6,1	6,2	6,3	6,4	6,5	6,6

NDA 12015

$$
\left.+\sqrt{1+\frac{x^{2}}{a^{2}}}\right]+
$$

NDA 22014 Question Paper

Number of calls	0	1	2	3	4	5	6	7
Frequency	14	21	25	43	51	40	39	12

NDA 22014 Solutions

2	40	
2	20	0
2	10	0
2	5	0
2	2	1
	1	0
\ldots	\cdots	\ldots

$$
=\sqrt{\frac{x^{2}+y^{2}}{\alpha^{2}+\beta^{2}}}=
$$

NDA 22014

$$
\sqrt{-(-2) \cdot\left(\frac{2}{2}\right)}
$$

都

$$
\sqrt{1-\frac{b^{2}}{a^{2}}}=
$$

$$
=\frac{(4 \hat{i}+\hat{\mathrm{j}}+\hat{\mathrm{k}}) \cdot(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})}{\left|\sqrt{4^{2}+1^{2}+1^{2}}\right|\left|\sqrt{2^{2}+(-1)^{2}+(-1)^{2}}\right|}
$$

$$
\begin{aligned}
& =\sqrt{(1+1)^{2}+\left(2-\frac{3}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}} \\
& =\frac{(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}) \cdot(4 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+7 \hat{\mathrm{k}})}{\mid \sqrt{4^{2}+(-4)^{2}+7^{2} \mid}} \\
& \\
& { }_{0}^{1} \frac{\mathrm{x}}{\sqrt{1-\left(1-2 \sin ^{2} \frac{\mathrm{x}}{2}\right)}}
\end{aligned}
$$

- - $-\quad-\quad-\quad . \quad-\quad-\quad-\quad-\quad-$
\qquad

Numbers(x)	Frequency(f)	c.f.	$\sum \mathrm{fx}$
0	14	14	0
1	21	35	21
2	25	60	50
3	43	103	129
4	51	154	204
5	40	194	200
6	39	233	234
7	12	245	84
	$\mathrm{~N}=245$		$\sum \mathrm{fx}$
			$=922$

NDA 12014 Question Paper

$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{COOCH}_{3}$ $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{COONa}$ ich one of the followin
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$ $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CHCl}_{2}$

NDA 12014 Solutions

NDA 12014
\qquad

\because
\because

$$
=\frac{2\left[\frac{[1+\mathrm{f}(\mathrm{x})]}{1-\mathrm{f}(\mathrm{x})}\right]-1}{\lceil\mathrm{r} 1 \cdot \mathrm{f} \ldots \mathrm{~m}\rceil}
$$

3

$$
\left|\frac{b \cos \alpha \sqrt{a^{2}-b^{2}}+0-a b}{\sqrt{b^{2} \cos ^{2} \alpha+a^{2} \sin ^{2} \alpha}}\right|
$$

$$
-\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|
$$

$$
=\left|\frac{-\mathrm{b} \cos \alpha \sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}}+0-\mathrm{ab}}{\sqrt{\mathrm{~b}^{2} \cos ^{2} \alpha+\mathrm{a}^{2} \sin ^{2} \alpha}}\right|
$$

NDA 12014

\qquad
.
\qquad
\qquad

, 2m-

[^1]

*-a
*-a
*-a

$\xrightarrow[c]{\substack{\text { Medium of } \\ \text { refractive in }}}$

\[

$$
\begin{array}{ll}
A & A \\
A & A
\end{array}
$$
\]

1) $1:-1$!

NDA 22013 Solutions

2	83	1
2	41	1
2	20	0
2	10	0
2	5	1
2	2	0
	1	

an $15^{\circ}=\sqrt{\frac{1-\cos 30^{\circ}}{1+\cos 30^{\circ}}}=\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{1+\frac{\sqrt{3}}{2}}}=\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}$

$$
=\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}}=\sqrt{\frac{(2-\sqrt{3})^{2}}{1}}=2-\sqrt{3}
$$

$$
=\sqrt{1+\frac{\left(\frac{1}{3}\right)^{2}}{\left(\frac{1}{2}\right)^{2}}}=
$$

$$
=\left|\frac{2 \times 0+0+2 \times 0-3}{\sqrt{2^{2}+1^{2}+2^{2}}}\right|=
$$

os $\theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|$
$\left|\frac{a(-a)+(a)(a)+(a)(a)}{\sqrt{a^{2}+a^{2}+a^{2}} \sqrt{a^{2}+a^{2}+a^{2}}}\right|$

$\therefore \therefore-\therefore=$

$$
=\frac{(\hat{\mathrm{i}}-\mathrm{mj}) \cdot(\hat{\mathrm{j}}+\hat{\mathrm{k}})}{\left|\sqrt{1+\mathrm{m}^{2}}\right|\left|\sqrt{1^{2}+\mathrm{l}^{2}}\right|}
$$

$$
=2 \pi \sqrt{\frac{4 \ell}{\mathrm{~g}}}
$$

Prepare for SSB Interview from Bestsellers

合会会合给－ 68 customer reviews

Buy Now

22 January 2018
Verified Purchase
The book has so much material that a person will not only learn all the OLQs，but will also be able to find out the OLQs within him．The best thing about this is the TAT example which not only are solved，but have a detailed description of the OLQs shown by rhe hero．This will help greatly into shaping ones psychology to the needed one．Greatly recommended

领领领 the book is amazing

4 January 2018
Verified Purchase
A book worth reading for all ssb aspirants，it really helps you in knowing how you think and assessing your personality for the armed forces

合合合放合 Five Stars

18 January 2018
Verified Purchase
Nice Book

[^0]: 28

[^1]: \cdots
 ?

